SINGAPORE'S FOURTH BIENNIAL UPDATE REPORT

UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

PUBLISHED BY

National Environment Agency Environment Building 40 Scotts Road Singapore 228231

IN COLLABORATION WITH

Ministry of Foreign Affairs Ministry of National Development Ministry of Sustainability and the Environment Ministry of Trade and Industry Ministry of Transport National Climate Change Secretariat

IMAGES CONTRIBUTED BY

Barramundi Asia Pte Ltd Building and Construction Authority Earth Observatory of Singapore Energy Market Authority Housing & Development Board Land Transport Authority National Climate Change Secretariat National Environment Agency National Parks Board Neste Corporation PUB, Singapore's National Water Agency Sembcorp Cogen Pte Ltd Sembcorp Industries Senoko Energy Pte Ltd Singapore Food Agency Singapore LNG Corporation Pte Ltd

© NATIONAL ENVIRONMENT AGENCY 2020

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic or mechanical, without the prior permission of the National Environment Agency.

NOTES ON USING THIS DOCUMENT

As a non-Annex I Party to the United Nations Framework Convention on Climate Change (UNFCCC), Singapore is obliged to submit our National Communication (NC) every four years¹ and our 1st Biennial Update Report (BUR) to the UNFCCC in 2014.2

Singapore submitted our 4th NC and 3rd BUR in 2018.

The BUR presents Singapore's ongoing and planned mitigation actions till 2020.

This document was prepared in accordance with the UNFCCC Biennial Update Reporting Guidelines (decision 2/CP.17 annex III).

¹UNFCCC decision 1/CP.16 ²UNFCCC decision 2/CP.17

CHAPTER 1 National Circumstances — 008

2016 Greenhouse Gas Inventory Worksheets — 082

Greenhouse Gas Summary Tables for 2014, 2012, 2010, 2000 and 1994 — 130

CONTENTS

Foreword — 003

Executive Summary — 006

FOURTH BIENNIAL UPDATE REPORT

CHAPTER 2 Enhancing Capacities — 018

CHAPTER 3 National Greenhouse Gas Inventory - 024

> CHAPTER 4 Mitigation Measures — 060

> > ANNEX

Glossary — 140

FOREWORD

2020 has been a year of extraordinary circumstances, and a stark reminder of how vulnerable we are to the forces of nature. Even as we continue to tackle the global health crisis, we cannot afford to put the climate agenda on the back burner. Extreme climate and weather events have become more frequent and could become our new reality if global warming is not addressed. The Intergovernmental Panel on Climate Change (IPCC)'s landmark Special Report on Global Warming of 1.5°C, Special Report on Climate Change and Land and Special Report on the Ocean and Cryosphere in a *Changing Climate* published in recent years underscore the urgency for a global response to mitigate the impact of climate change.

Therefore, as we rebuild and recover from the pandemic, we must take the opportunity to shift our economies and societies towards a low-carbon and climate-resilient future.

The Paris Agreement represents a clear global commitment to tackle climate change. A concerted response by all countries will be critical towards achieving the long-term temperature goal of the Paris Agreement. Each country must plan for and implement efforts to reduce its carbon footprint and prepare for climate challenges.

Singapore is committed to supporting the global call for enhanced climate action. Although our access to alternative energy sources is greatly limited, we have undertaken early efforts to drive sustainable development and pursue low-carbon growth. We are on track to achieve our 2009 Copenhagen pledge to reduce emissions by 16% below our business-as-usual (BAU) level in 2020. In March this year, Singapore submitted

an enhanced Nationally Determined Contribution (NDC) to peak our emissions at 65 million tonnes of carbon dioxide equivalent (MtCO₂ eq) around 2030. We have also put forward our long-term lowemissions development strategy (LEDS), which aspires to halve emissions from its peak to $33MtCO_2$ eq, with a view to achieving net-zero emissions as soon as viable in the second half of the century.

Our transition to a low-carbon future will require a concerted effort across our industry, economy and society. Our actions over the years, such as harnessing solar energy, improving energy efficiency, adopting cleaner vehicles, safeguarding our greenery and implementing a carbon tax, have set the foundation for Singapore's carbon mitigation strategy. We will continue to pursue emissions reductions across all sectors through a comprehensive suite of mitigation measures.

The Active, Beautiful, Clean Waters (ABC Waters) Programme has transformed Singapore into a City of Gardens and Water.

At the same time, we are implementing longterm adaptation plans to enhance the nation's climate and resource resilience. For Singapore, climate change is an existential challenge. As a low-lying island city-state, Singapore is fundamentally vulnerable to the threat of rising sea levels and extreme weather conditions.

Singapore's Fourth Biennial Update Report summarises the progress we have made as a nation to address climate change and meet

Opposite page: Reducing emissions through travel on the MRT

our obligations under the United Nations Framework Convention on Climate Change (UNFCCC). We will continue to press ahead to implement our climate strategies in good faith to advance global climate efforts, in the spirit of collaboration and collective action with all countries. The pandemic reminds us that a global crisis requires a global solution governments need to work in concert with one another, and in collaboration with the scientific and business communities and civil society.

MR TEO CHEE HEAN

SENIOR MINISTER CHAIRMAN OF THE INTER-MINISTERIAL COMMITTEE ON CLIMATE CHANGE (IMCCC)

EXECUTIVE SUMMARY

Singapore is a small, low-lying, island city-state vulnerable to the effects of climate change.

Given Singapore's small size and dense urban landscape, there are challenges to using alternative energy sources such as solar, nuclear and wind energy. Such difficulties in switching to alternatives are recognised by the United Nations Framework Convention on Climate Change (UNFCCC).

Singapore's greenhouse gas emissions for 2016 totalled 50,702.71 gigagram CO_2 equivalent. Carbon dioxide (CO_2) accounted for 95.2% of total emissions. Non- CO_2 gases such as methane (CH_4), nitrous oxide (N_2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), sulphur hexafluoride (SF_6) and nitrogen trifluoride (NF_3) accounted for the remaining 4.8% of total emissions. This excludes an estimate of HFCs emissions from the refrigeration and air conditioning (RAC) sector, for which we are in the process of finalising.

Singapore is on track to achieve our Copenhagen pledge submitted in 2010 to reduce our emissions by 16% below our business-as-usual (BAU) level in 2020. To build on these efforts, we have submitted an enhanced Nationally Determined Contribution (NDC) committing to peak our emissions at no higher than 65 million tonnes of carbon dioxide equivalent (MtCO₂ eq) around 2030.

Singapore has also set out a long-term low-emissions development strategy (LEDS), aspiring to halve emissions from its peak to 33MtCO₂ eq by 2050, with a view to achieving net-zero emissions as soon as viable in the second half of the century. Our enhanced NDC and LEDS build on policies and initiatives we have progressively implemented over the years. They demonstrate our seriousness and commitment to support global climate action and to work towards a low-carbon, climateresilient future.

A key pillar of Singapore's strategy to mitigate greenhouse gas emissions is to improve energy efficiency across different sectors of the economy. Singapore has taken steps to use a cleaner fuel mix for electricity generation, switching from fuel oil to natural gas. However, there are limits to how much more emissions can be reduced by switching fuels, as natural gas, the cleanest fossil fuel, already constitutes about 95% of our fuel mix for electricity generation. While Singapore continues to invest actively in research on clean energy technologies to reduce the use of fossil fuels, there are limits to the deployment of alternative or renewable energy sources.

In addition to reducing emissions, Singapore will continue to raise awareness and build capabilities to improve energy efficiency across the sectors through the use of incentives or regulatory measures where appropriate. Singapore has implemented a carbon tax of S\$5 or US\$3.64 per tonne of CO₂ equivalent (tCO_2 eq) of greenhouse gas (GHG) emissions in the first instance, between 2019 and 2023, as a transition period. We intend to increase it to S\$10-15 or US\$7.27-10.91/ tCO_2 eq by 2030. The carbon tax will complement our existing mitigation efforts to meet our climate pledge under the Paris Agreement.

As a relatively low-lying, densely populated island in the tropics, Singapore is naturally vulnerable to the impacts of climate change. Singapore takes a proactive, long-term approach towards climate change adaptation. Climate change resilience goes beyond physical adaptation, and must include building resilient mindsets as well as collective action to safeguard our environment. Climate resilience and adaptation plans will be continuously reviewed and adjusted as new knowledge and information on the effects of climate change become available.

Climate change is an issue with many dimensions that cut across the responsibilities of several ministries. The Inter-Ministerial Committee on Climate Change (IMCCC) continues to play an important role in coordinating Singapore's approach to climate change.

As a responsible member of the global community, Singapore is actively working at the international, regional and bilateral levels to support global efforts to address the challenges of climate change.

0 0 7

NATIONAL CIRCUMSTANCES

Singapore has taken early measures on sustainable development and optimised the use of scarce land through integrated urban planning.

CHAPTER 1

COUNTRY PROFILE

Singapore is a small island state in Southeast Asia and consists of one main island and more than 60 smaller ones. It is located between latitudes 1°09'N and 1°29'N and longitudes 103°36'E and 104°25'E, approximately 137km north of the equator. It is separated from Peninsular Malaysia by the Straits of Johor, and the Indonesian islands by the Straits of Singapore.

LAND AREA

The main island of Singapore is about 49km east to west and 28km from north to south, with a coastline of 215km. The total land area (including that of smaller islands) is about 728.0km². Among the smaller islands, the larger ones are Pulau Tekong (26.7km²), Pulau Ubin (10.2km²) and Sentosa (4.8km²).

Singapore's surface reaches 163m at our highest point. Much of Singapore is generally flat and less than 15m above sea level, as defined by the Singapore Height Datum (SHD).³

CLIMATE

Singapore is situated near the equator and has a tropical climate, with relatively high and uniform temperatures, abundant rainfall, and high humidity throughout the year. The 1981-2010 long-term average daily temperature was about 27.5°C, with an average daily maximum of about 31.5°C and an average daily minimum of about 24.7°C. The long-term average annual rainfall is around 2,166mm.

The climate of Singapore is characterised by two monsoon seasons separated by intermonsoonal periods. The Northeast Monsoon occurs from December to early March, and the comparatively drier Southwest Monsoon from June to September. The early part of the Northeast Monsoon (December to early January) is the wetter period of the year when monsoon surges occur, which sometimes result in prolonged heavy rain. The later part of the Northeast Monsoon (late January to early March) is usually much drier, with February being the driest month during this period. Afternoon thunderstorms are common throughout the year, especially during the inter-monsoonal periods from late March to May and October to November. During the Southwest Monsoon and inter-monsoonal periods, widespread heavy rain and gusty winds associated with Sumatra squalls also occur occasionally.

Recent Trends

Observations by the Meteorological Service Singapore showed that the warm trend experienced in Singapore over the past decades continued in 2019. For 28 consecutive months from February 2018 to May 2020, Singapore's monthly mean temperatures were above the respective monthly average. The annual mean temperature in 2019 was 28.4°C, equalling the record set in 2016. Four of the past five years (2015, 2016, 2018 and 2019) are also among the top 10 warmest years on record with respect to annual mean temperature.

Other than the high temperatures, 2019 was also particularly dry. Rainfall recorded at the climate station was 1,368mm, making 2019 the third driest year behind 1997 (1,119mm) and 2015 (1,267mm) since rainfall records began in 1869.

POPULATION

As of June 2019, Singapore's total population, including foreigners working in Singapore, was estimated at 5.7 million. The resident population, comprising Singapore citizens and permanent residents, was estimated at 4.0 million, or 71% of the total population. Singapore's small land area also means that our population density of about 7,866 people per km² is one of the highest in the world.

ECONOMY

Singapore is an export-oriented economy that is highly dependent on international trade. In 2019, in nominal terms, Singapore's external merchandise trade amounted to S\$1,022 billion or US\$759 billion, two times its GDP (S\$508 billion or US\$377 billion). Over several decades, Singapore has built up a strong economy where manufacturing, wholesale trade and retail trade sectors each comprised around 21% and 17% of GDP respectively, in 2019. Singapore's small domestic market has necessitated an export-oriented economy, with the bulk of our industries manufacturing products for export rather than local consumption. For example, Singapore is one of the five largest export refining centres in the world, and our three refineries produce primarily for global export. Oil made up around 17% of our total merchandise exports in 2019. Singapore's strategic geographical location has also enabled it to develop into a major air and sea transportation hub. The economic structure in 2019 is as shown.

Economic Structure, 2019

Nominal Value Added Share, %)	%
Manufacturing	20.9
Construction	3.7
Jtilities	1.2
Other Goods Industries	0.0
Vholesale & Retail Trade	17.3
Fransportation & Storage	6.7
Accommodation & Food Services	2.1
nformation & Communications	4.3
Finance & Insurance	13.9
Business Services	14.8
Other Services Industries	11.3
Ownership of Dwellings	3.8

WATER

Located in the equatorial rain belt, Singapore receives abundant rainfall annually. However, Singapore is considered a water-scarce country due to limited land to collect and store rainwater. To ensure water sustainability, Singapore has developed a diversified and robust supply of water through the Four National Taps, namely local catchment water, imported water, NEWater (high-grade reclaimed water produced from treated used water) and desalinated water.

Since 2011, the total water catchment area has increased from half to two-thirds of Singapore's land surface with the completion of three reservoirs in urbanised areas. Despite our best efforts to maximise water supply from our local catchments, Singapore is still physically limited by our small land area, while demand for water continues to increase in tandem with economic and population growth. Water demand is expected to almost double by 2060.

Integral to the large-scale collection of used water for recycling into NEWater is the Deep Tunnel Sewerage System (DTSS). A superhighway for used water management, the DTSS provides a cost-effective and sustainable solution to meet Singapore's long-term needs for used water collection, treatment, reclamation and disposal.

NEWater and desalinated water are independent of rainfall, and thus greatly enhance the resiliency of our water sources against dry weather. However, the production of these two sources is more energy-intensive than treating raw water from the local catchment. PUB, Singapore's National Water Agency, has been investing in research and development (R&D) to improve the energy efficiency of our water production. For instance, biomimetic membrane technology, which mimics and models desalination processes in nature (e.g. in mangrove plants and marine fish), is being engineered and scaled up to reduce the energy needed for membrane-based water purification processes. Another research

The seawater reverse osmosis membrane vessels used in the desalination plant are more energy-intensive compared to treating water from the local catchment.

priority is pressure-retarded osmosis, which recovers energy from the waste streams of seawater desalination and NEWater production. Combining these technologies will lower the energy demand for water production at a systems level. These low-energy solutions will take time to develop and mature before they can be fully deployed.

Managing demand is equally essential to ensuring a sustainable water supply. Singapore adopts a multi-pronged approach in managing its water demand: pricing water to reflect its scarcity value, mandating water efficiency standards and public education on water conservation practices. Through wide-ranging water conservation measures, Singapore's per capita domestic water consumption was reduced from 165 litres per day in 2003 to 141 litres per day in 2019. Through holistic and efficient water demand management strategies, Singapore has a distribution loss of 8.3% in 2019. The number of leaks in Singapore, at 5.3 leaks/100km/year, is low compared to other countries.

SINGAPORE'S NATIONAL **CIRCUMSTANCES AND** CONSTRAINTS

Singapore currently accounts for around 0.1% of global emissions. We will continue to build on a long-standing and comprehensive national

approach that seeks to achieve sustainable growth alongside environmental protection. As we work towards a low-carbon future, the extent of emission reduction from our climate strategy will depend on our national circumstances, past mitigation efforts and geographical constraints, which limit our access to renewable energy at scale.

Historically, our strategic geographical position along the East-West trade routes has made Singapore a natural location for oil storage and refining facilities serving the region. Building on our position as a key regional port, the refining and petrochemical plants help create synergies and are part of a business supply network in Southeast Asia, the Western Pacific, South Asia and Australasia. The refining and petrochemical sector is a large source of our carbon emissions and Singapore has been working to improve energy efficiency in these sectors. This is an ongoing effort.

Singapore has taken early measures on sustainable development such as switching to natural gas for electricity generation instead of more pollutive fuel oil, and imposing a vehicle quota system to cap vehicle growth. In addition, we have optimised the use of our scarce land through integrated urban planning. Given Singapore's unique circumstances as both a city and a nation-state, our small land area has to accommodate not only housing

and commercial hubs, but also power plants, reservoirs, air and seaports and industries, all within our boundaries. Singapore has also adopted a greening strategy to extend our natural capital and green cover. Our urban greenery and natural ecosystems help to mitigate the effects of, and build resilience to, climate change by storing and sequestering carbon. As trees grow, they build up biomass and become carbon stock. Our greenery also helps to keep urban areas cooler and improve air quality, thus mitigating the impact of climate change.

CLIMATE VULNERABILITIES

Fundamentally, climate change poses an asymmetrical and existential challenge to small island nations like Singapore. Although our impact on global emissions is small, the effect of climate change is disproportionately large on us as a low-lying island nation.

Singapore's vulnerability to climate change will require the Government to pursue a comprehensive adaptation programme to protect our coasts, low-lying areas and communities.⁴ These adaptation actions will impose significant fiscal costs on the Government.

The Plant-A-Tree Programme is a platform for organisations and individuals to actively participate in the greening of Singapore by planting trees.

⁴Singapore's Climate Action Plan: Take Action Today for a Sustainable Future outlines the impact of climate change on Singapore and Singapore's strategy in reducing Greenhouse Gas emissions.

ALTERNATIVE ENERGY CONSTRAINTS

Singapore has limited land area, relatively flat land, a high urban density, low wind speeds, and lacks geothermal resources. Therefore, harnessing alternative energy sources such as hydroelectric, wind, geothermal or nuclear power is a major challenge. While solar energy is Singapore's most viable alternative energy option, competing uses for land greatly limit our access to solar energy at scale. Such difficulties in transitioning to alternative energy are recognised by the United Nations Framework Convention on Climate Change (UNFCCC), under Articles 4.8 and 4.10.

BIOMASS

Biomass, which is used by many countries with available land mass as an alternative to fossil fuel, is not viable as a significant energy resource for Singapore. Singapore already converts much of our waste to energy, providing about 2.5% of the total electricity generated in 2018. Nonetheless, we will continue to monitor developments in this area.

CARBON CAPTURE, UTILISATION AND STORAGE (CCUS) AND HYDROGEN

Singapore will look into emerging low-carbon solutions such as CCUS and low-carbon hydrogen (as alternative fuel and industrial feedstock), which have the potential to help reduce our carbon footprint.

Whilst such solutions have been conceptually proven, their large-scale deployment is currently limited by economic, institutional and technical constraints. We will continue to evaluate such technologies and invest in R&D initiatives to facilitate their costeffective application.

GEOTHERMAL

Geothermal energy is not commercially viable in Singapore given the lack of conventional geothermal resources and our small land area. Unconventional geothermal resources cannot be utilised in a cost-effective manner with current technologies.

HYDROELECTRIC POWER

Hydroelectricity harnesses the energy of flowing water for the generation of electricity. Much of Singapore is generally flat and less than 15m above sea level, as defined by the SHD. The absence of major river systems means that hydroelectricity is not a viable option in Singapore.

Recognition of National Circumstances in the United Nations Framework Convention on Climate Change (UNFCCC)

The United Nations Framework Convention on Climate Change (UNFCCC) Articles 4.8 and 4.10 calls for Parties to take into consideration developing countries' national circumstances – especially small island countries, countries with low-lying coastal areas, land-locked and transit countries, and countries disadvantaged in the use of alternative energy sources, amongst others.

Article 4.8: "Parties shall give full consideration to actions to meet the specific needs and concerns of developing country Parties arising from the adverse effects of climate change and/or the impact of the implementation of response measures." Three sub-clauses in the article are of specific relevance to Singapore, namely:

4.8 (a) Small island countries

4.8 (b) Countries with low-lying coastal areas

4.8 (h) Countries whose economies are highly dependent on income generated from the production, processing and export, and/or on consumption of fossil fuels and associated energy-intensive products

Article 4.10: "The Parties shall, in accordance with Article 10, take into consideration in the implementation of the commitments of the Convention the situation of Parties, particularly developing country Parties, with economies that are vulnerable to the adverse effects of the implementation of measures to respond to climate change. This applies notably to Parties with economies that are highly dependent on income generated from the production, processing and export, and/or consumption of fossil fuels and associated energy-intensive products and/or the use of fossil fuels for which such Parties have serious difficulties in switching to alternatives."

MARINE (TIDAL AND WAVE POWER)

The tidal range (difference between high and low tide) is about 1.7m, well below the 4m tidal range that is typically required for commercial tidal power generation. The availability of wave power is determined by the height and frequency of waves, but the waters around Singapore are relatively calm as we are surrounded by land masses. In addition, wave, tidal and ocean thermal energy have limited application as much of our sea space is used for ports, anchorage and international shipping lanes.

NUCLEAR

Singapore conducted a pre-feasibility study (Pre-FS) on nuclear energy as an option to meet our long-term needs. The study concluded in 2012 that nuclear energy technologies available at the time were not suitable for deployment in Singapore.

Since the conclusion of the Pre-FS, we have been monitoring the development of safer nuclear energy technologies. Newer nuclear power plant designs that are being developed and tested have the potential to be much safer than many of the plants that are in operation today. However, the risks to Singapore, given that we are a small and densely populated city, still outweigh the benefits at this point. Most of these newer technologies are still in the testing phase and have not been operationally proven. As we are planning for the long term and not for our immediate energy needs, we will continue to monitor the progress of these nuclear energy technologies to keep our energy options open for the future. We will also continue to strengthen our capabilities to understand nuclear science and technology.

WIND

Harnessing wind energy is also not viable, given our low average wind speeds of about 2m/s to 3m/s and lack of land for large-scale application of wind turbines. Most commercial wind farms leverage average wind speeds of at least 4.5m/s, while prime wind sites require annual average wind speeds in excess of 7.5m/s. In addition, there are challenges to harnessing offshore winds due to busy maritime traffic in our waters.

SOLAR

Despite Singapore's space constraints, the Government is pressing ahead to promote solar photovoltaic (PV) deployment, with solar energy being our most viable renewable energy source. Singapore has taken proactive steps to facilitate solar deployment through regular reviews to streamline existing regulations and compliance requirements. The Government has also embarked on the SolarNova Programme, which aggregates demand for solar deployment across public sector buildings and spaces to catalyse the growth of solar energy. The lead demand generated has also helped and will continue to support the solar industry to develop its capabilities. In addition, the Government is actively investing in R&D and test-bedding to improve the efficiencies and lower the costs of solar PV and related technologies.

As solar deployment increases, we are pursuing solutions to manage the intermittency of solar PV in Singapore's context, to ensure a stable and reliable grid, for example, energy storage and solar forecasting.

PURSUIT OF SUSTAINABLE DEVELOPMENT

Singapore has always prioritised environmental issues and has pursued the goals of growing the economy and protecting the environment concurrently.

Our pursuit of sustainability and environmental protection is reflected in our approach to urban development and resource management, including how we manage transportation, housing, waste, greenery, energy and water. For instance, since the early 2000s, we have been replacing fuel oil with natural gas – the cleanest form of fossil fuel – as the

primary fuel for electricity generation. In 2019, natural gas accounted for around 95% of our electricity generation, with the remainder mainly from waste-to-energy plants and solar PVs. We have deployed around 400MWp of solar PVs in 2020, including floating PVs, and aim to increase this to at least 2GWp by 2030. We are also developing innovative clean energy solutions in partnership with academia, industry and other countries. We price energy at market cost, without any subsidy, to reflect resource scarcity and promote judicious usage. We also maintain stringent measures to discourage vehicle ownership and usage, and to encourage energy efficiency and conservation across all the sectors. To maximise the potential of emission reduction from sectoral measures, Singapore implemented a carbon tax, the first carbon pricing scheme in Southeast Asia, in 2019. The carbon tax is not standalone – it forms part of our comprehensive suite of mitigation measures to reduce emissions, create green growth opportunities, and transit to an energy-efficient and low-carbon economy. We safeguard more than 7,800 hectares of green spaces – nature reserves, gardens and parks - across Singapore, and integrate greenery throughout the city.

emissions intensity today to be one of the

lowest in the world. We ranked among the 20 best-performing out of 141 countries in terms of emissions intensity in 2017.⁵ We are recognised as Asia's most sustainable city and the fourth most sustainable city globally according to the 2018 Sustainability Cities Index. The Sustainability Cities Index recognises that Singapore is undertaking several sustainability initiatives that will create a high-quality living environment, which is resilient and in line with the broader climate change agenda. Singapore has also been ranked first in the Global Competitiveness Index in the World Economic Forum (WEF)'s Global Competitiveness Report 2019, underscoring how our sustainability efforts have helped Singapore maintain its competitiveness.

Innovation will be key for Singapore to continue to develop sustainably. We aim to develop an ecosystem of green finance and active R&D that nurtures the development and adoption of lowcarbon innovations. With such an ecosystem, we can seize green growth opportunities, grow our economy and create new jobs as we transit to a low-carbon economy.

Despite our constraints and unique circumstances, Singapore is committed to reducing our emissions across all sectors to support global climate action. Details of our mitigation actions are provided in Chapter 4.

Neste, the largest renewable diesel and sustainable aviation fuel producer worldwide, has been operating one of its largest renewable refineries in Singapore since 2010. Its sustainable aviation fuel will be used by international airlines for more environmentally friendly travel.

⁵Source: International Energy Agency, CO₂ Highlights 2019

IMCCC FRAMEWORK

INTER-MINISTERIAL COMMITTEE ON CLIMATE CHANGE Chaired by Senior Ministe Mr Teo Chee Hean IMCCC EXECUTIVE COMMITTEE Chaired by Permanent Secretary (Strategy Group, PMO) MITIGATION NEGOTIATIONS

Long-Term Emissions and Mitigation Working Group

Working Group

INSTITUTIONAL ARRANGEMENTS

Climate change is an issue with many dimensions that cut across the responsibilities of several ministries. The Inter-Ministerial Committee on Climate Change (IMCCC) was therefore set up in 2007 to oversee the wholeof-government coordination on Singapore's approach to climate change. The IMCCC is chaired by the Senior Minister and Coordinating Minister for National Security, and includes the Minister for Sustainability and the Environment, the Minister for Finance, the Minister for Foreign Affairs, the Minister for National Development, the Minister for Trade and Industry, and the Minister for Transport. The IMCCC is supported by an Executive Committee (Exco) comprising the Permanent Secretaries of the respective Ministries. The IMCCC Exco oversees the work of the International Negotiations Working Group (INWG), Long-Term Emissions and Mitigation Working Group (LWG), and the Resilience

To ensure the effective coordination of Singapore's domestic and international policies, plans and actions on climate change, the National Climate Change Secretariat (NCCS) was established as a dedicated unit in July 2010 under the Prime Minister's Office. NCCS is part of the Strategy Group which supports Working Group (RWG). the Prime Minister and his Cabinet to establish The INWG develops Singapore's international priorities and strengthen strategic alignment across the Government. The positioning of climate change negotiations strategy under the UNFCCC. The LWG examines options for NCCS underscores the importance that Singapore places on climate change. emission reduction and identifies the capabilities,

NATIONAL

infrastructure and policies needed for longterm mitigation. A Measurement, Reporting and Verification (MRV) Task Force under the LWG is tasked with coordinating inter-agency MRV efforts. This includes the preparation of Singapore's National Communication (NC) and Biennial Update Report (BUR) by an inter-agency working group for approval by the IMCCC, and preparing Singapore to undergo the International Consultations and Analysis (ICA) process. The RWG studies Singapore's vulnerability to the effects of climate change and recommends longterm plans that ensure the nation's adaptation to future environmental changes. Singapore is reviewing our institutional arrangements and will provide an update in the next BUR.

The planting of nectaring plants in our parks has helped provide food sources for many native fauna, attracting species such as the Crimson Sunbird.

We see the life of

ENHANCING CAPACITIES

CHAPTER 2

Even as we build up our Measurement, Reporting and Verification capacities domestically, we continue to share our experiences and best practices with fellow developing countries.

internation and the state of th

Singapore recognises the importance of enhancing our capacity for Measurement, Reporting and Verification (MRV) processes, and pursuing ambitious climate actions. Enhancing our technical expertise is an ongoing process, taking into consideration the best available science and technology, as well as our experience from implementing previous programmes.

Given Singapore's unique circumstances and evolving needs, we constantly seek new opportunities to leverage innovative technologies and solutions to address our climate change adaptation and mitigation needs. Whilst Singapore does not rely exclusively on external sources for financial, technical, technological or capacity-building support to address climate change, the Government pursues partnerships with civil society, academia, businesses and other likeminded countries to co-create solutions that can support Singapore's transition towards a low-carbon, climate-resilient future. We also participate in technical workshops, and consult subject experts at the UNFCCC Secretariat, think-tanks, academia and international organisations to further enhance our MRV processes and climate policies. Having learnt much from these efforts, we continue to pay it forward by sharing our experiences and best practices with fellow developing countries.

MRV CAPACITIES

To enhance the transparency of Singapore's GHG inventory, Singapore has transitioned from using the Revised 1996 IPCC Guidelines for National GHG Inventories for some sectors to using the 2006 IPCC Guidelines for National GHG Inventories for all sectors. In addition, the Global Warming Potentials (GWPs) applied to all GHGs now take reference from the IPCC Fifth Assessment Report (AR5) instead of the IPCC Second Assessment Report (SAR), to take into account the latest science. Singapore has been building its capacity to facilitate the transition by participating in training programmes organised by the UNFCCC Secretariat, IPCC and other expert organisations.

Furthermore, efforts were undertaken to enhance the transparency of GHG inventory reporting in the following areas:

1 -Inclusion of NF₃ gas

In addition to the six GHGs that Singapore has been reporting, Singapore has taken the initiative to include a seventh GHG, NF₃, into the national GHG inventory.

2 — Recalculation of GHG time series

In line with IPCC Good Practice Guidance to continually review the GHG inventory, Singapore's GHG inventory has been updated in a consistent manner. Where historical data is unavailable, the splicing techniques prescribed in the 2006 IPCC Guidelines, such as extrapolation and surrogate method, were applied to ensure time series consistency. More details are provided in Chapter 3.

3 — New and updated reporting tables

As Singapore transitioned to the 2006 IPCC Guidelines, all reporting tables in the GHG inventory chapter were updated to reflect the updated guidance, IPCC sectors, categories and subcategories, where applicable. For enhanced transparency, a new table is included to reflect the methods and emission factors used for emissions estimation, and GHG emissions estimates provided in the Annex worksheets are now provided in units of mass (e.g. gigagram).

Opposite page: The Supertrees at Gardens by the Bay harvest solar energy for their light-up at night.

ENHANCING CAPACITIE

2

Singapore will continue efforts to enhance our MRV capabilities to improve the transparency of our reports. We will continue to build our capacities through participation in technical workshops and the outcomes will be included in future BURs.

LAND USE, LAND-USE CHANGE AND FORESTRY SECTOR

Singapore continues to monitor GHG emissions and removals from the Land Use, Land-Use Change and Forestry (LULUCF) sector via wall-to-wall assessment of the land use and land-use changes derived through very high-resolution satellite images, encompassing all land-use categories as well as activity data on the five carbon pools, in accordance with the guidelines defined by the IPCC. Most of the emission factors are obtained from field measurements and modelling.

As we proceed to build on the refinements reported in previous BURs, we continue to enhance our data collection and analysis for this sector. In doing so, we have embarked on our next cycle of field measurements for the national forest inventory, which will provide an update to the emission factors. The revised factors will be used in the preparation of subsequent BURs. We have also taken a closer look at processing our satellite images in order to refine the estimates of our activity data.

We continue to build our capacity by providing regular internal training opportunities for technical staff as well as participating in capacity-building workshops to develop our technical capabilities further.

DEVELOPING AN EMISSIONS INVENTORY FOR HFCs BASED ON IPCC TIER 2 METHODOLOGY

In 2018, Singapore developed an interim Tier 1b estimate of HFCs emissions from the RAC sector for the year 2014. The same methodology was used to obtain an estimate for 2016. The estimate is $6.26MtCO_2 eq.^6$

On 1 January 2019, Singapore implemented licensing controls on the HFCs regulated under the Kigali Amendment of the Montreal Protocol. The licensing regime has enabled Singapore to collect more accurate import and export trade data on HFCs. With the new licensing condition, Singapore is working to develop a Tier 2 estimate of HFCs emissions for data from 2019 onwards, to be included in the national GHG inventory in future BURs/biennial transparency reports.

REFERENCE APPROACH AND SECTORAL APPROACH EMISSIONS

As a global trading hub with a high trade to GDP ratio, Singapore experiences volatility in trade data as a direct result of our large and varying trade volumes coupled with the presence of a large refining and petrochemical sector. This gives rise to large discrepancies between emissions calculated using the reference approach and sectoral approach. As such, emissions calculated using the sectoral approach would be more accurate than using the reference approach in Singapore's context.

Singapore is building its capacity to understand the discrepancies through an ongoing study. The results will be included in future BURs.

INTERNATIONAL COOPERATION EFFORTS

Climate change is a global challenge that requires global solutions. Singapore believes that the most effective way we can contribute is through sharing our best practices and expertise in climate change and sustainable development with fellow developing countries. We do this primarily through the Singapore

Caribbean participants of the 2019 Singapore-UNDRR Joint Training Programme workshop on disaster resilience at the Earth Observatory of Singapore (EOS)

Cooperation Programme (SCP), which is our flagship technical assistance programme. Since its establishment in 1992, more than 131,000 officials from over 170 countries and territories have participated in our training programmes. Our SCP programmes are aimed at strengthening countries' ability to implement the 17 Sustainable Development Goals (SDGs) of the 2030 Agenda and the Paris Agreement, in areas such as Climate Action, Sustainable Cities and Communities, and Affordable and Clean Energy.

Recognising the difficulties faced by many developing countries in countering the growing challenge of climate change, we established the Sustainable Development and Climate Change Programme in 2012 and the Climate Action Package in 2018. Courses under these programmes aim to support all developing

countries, in particular the Small Island Developing States and Least Developed Countries, in building climate resilience while achieving their Paris Agreement pledges. They cover topics such as climate adaptation and mitigation strategies, disaster risk reduction, energy efficiency and emission reduction. Singapore also works with developed and developing country partners and international organisations to synergise expertise and pool resources to implement capacity-building programmes. In June 2019, we worked with the UN Office for Disaster Risk Reduction (UNDRR) on a "train-thetrainers" workshop in disaster resilience for the Caribbean. In January 2020, we worked with the UNFCCC Secretariat and the NDC Partnership on a workshop on enhancing NDCs for Southeast Asian countries.

NATIONAL GREENHOUSE GAS INVENTORY

Carbon dioxide emissions make up about 95% of our total greenhouse gas emissions.

CHAPTER 3

The most significant greenhouse gas (GHG) emitted in Singapore is carbon dioxide (CO_2) , primarily produced by the burning of fossil fuels to generate energy used by the industry, building, household and transport sectors. Given Singapore's small land size and highly urbanised landscape, the GHG emissions from the Agriculture, Forestry and Other Land Use (AFOLU) sector are negligible in comparison with other economic sectors and the size of carbon stocks.

A natural gas-fired combined cycle plant converted from a conventional oil-fired steam power plant

METHODOLOGY USED

2006 IPCC GUIDELINES

Singapore's emissions were estimated using the 2006 IPCC Guidelines for National GHG Inventories. Emissions estimates were based on the sectoral approach. Most emissions estimates were derived using the Tier 1 methodology provided in the 2006 IPCC Guidelines. Where default conversion and emission factors were used, they were taken from the 2006 IPCC Guidelines as well, unless otherwise stated.

Higher tier methodology was used where data was available. Specifically, higher tiers and country/plant-specific emission factors were used for estimating fugitive emissions from oil and natural gas, emissions from some categories of industrial processes and product use, CH₄ emissions from solid waste disposal and CO₂ emissions from the incineration of solid waste. Emissions from the Land Use, Land-Use Change and Forestry sector were also obtained mainly from using

Tier 2 and Tier 3 methodologies based on the 2006 IPCC Guidelines and the 2013 Supplement to the 2006 IPCC Guidelines: Wetlands (Wetlands Supplement), where applicable.

IPCC GOOD PRACTICE GUIDANCE

The CO₂ emissions from hazardous waste incineration were estimated using Tier 1 methodology from the 2006 IPCC Guidelines, with default emission factors from the IPCC Good Practice Guidance due to unavailable factors in the 2006 IPCC Guidelines.

In addition, the IPCC Good Practice Guidance and Uncertainty Management in National GHG Inventories were applied to improve the transparency, consistency, comparability, completeness and accuracy of the inventory.

The tables on pages 27-31 provide the report for methods and emission factors used for the emissions estimation.

Greenhouse Gas Source	0	02	Ċ	H 4	Z	0	H	Cs	ΡF	cs	S	F ₆	z	
and Sink Categories	Method Applied	Emission Factor	Method Applied	Emissior Factor										
1 — ENERGY														
1A — Fuel Combustion Activities														
1A1 Energy Industries	ΤT		T1		ΓŢ									
1A2 Manufacturing Industries and Construction	F	D, CS	F		Ē	۵								
1A3 Transport	T1	۵	т1	۵	Τ	۵								
1A4 Other Sectors	Τ1	D, CS	т1	Ω	L1	Ω								
1A5 Non-Specified	ON	ON	NO	ON	ON	ON								
1B — Fugitive Emissions from Fuels														
1B1 Solid Fuels	ON	ON	NO	ON	ON	ON								
1B2 Oil and Natural Gas	Т2, Т3	PS	Т2, Т3	PS	ΓŢ	Ω								
1B3 Other Emissions from Energy			0	() I	((

arbon Dioxide	ort and Storage
- Carb	sport
10	Tran

	Ð
	ō
۲.	Ω.
2	1
2	0
5	¥.
۲.	in
5	~ ~
	5
-	Ċ
5	_
ς.	10
-	-
=	5
5	0
2	d
	S
	-
2	1
	<u> </u>

9 N HN AN S. S \cap ъ

\succ
£
0
\vdash
Z
ш
>
Z
_
S
<
G
Ϋ́
ີ
¥
÷.
~
~
0
- - - -
<
Z
0
Ξ.
4
-

0 2 8

Greenhouse Gas Source	ö	D_2	C	H	N	0	H	Cs	ΡF	Cs	SI	9	Z	°
and Sink Categories	Method Applied	Emission Factor												
2B — Chemical Industry														
2B1 Ammonia Production	ON	NO	NO	ON	ON	ON								
2B2 Nitric Acid Production					ON	ON								
2B3 Adipic Acid Production	NO	NO			ON	ON								
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production	0 N	ON			ON	ON								
2B5 Carbide Production	ON	ON	ON	ON										
2B6 Titanium Dioxide Production	ON	NO												
2B7 Soda Ash Production	0 N	ON												
2B8 Petrochemical and Carbon Black Production	Т3	PS	ON	ON										
2B9 Fluorochemical Production							ON	OZ	ON	ON	ON	ON	ON	ON
2B10 Other (please specify)	ON	NO	NO	ON	ON	ON								
2C — Metal Industry														
2C1 Iron and Steel Production	Т3	PS	NO	NO										
2C2 Ferroalloys Production	ON	NO	NO	NO										
2C3 Aluminium Production	ON	NO							ON	ON	ON	NO		
2C4 Magnesium Production	NO	NO					ON	ON	ON	ON	NO	NO		
2C5 Lead Production	ON	NO												
2C6 Zinc Production	ON	NO												
2C7 Other (please specify)	ON	NO	ON	ON										
2D — Non-Energy Products from Fuels and Solvent Use														
2D1 Lubricant Use	ΓT	D	NO	NO	ON	ON								
2D2 Paraffin Wax Use	ΓT	D	NO	NO	ON	ON								
2D3 Solvent Use	ON	NO	NO	NO	ON	ON								
2D4 Other (please specify)	ON	NO	ON	ON	ON	ON								

NA = Not Applicable, NE = Not Estimated and NO = Not Occurring \mathbf{D} = IPCC default, \mathbf{CS} = Country specific and \mathbf{PS} = Plant specific Notation keys: T1 = Tier 1, T2 = Tier 2 and T3 = Tier 3

Greenhouse Gas Source	ö	D_2	CF	1 ₄	Ž	O	ΗE	Cs	PF	Cs	SI	9 L	N	e e
and Sink Categories	Method Applied	Emission Factor												
2E — Electronics Industry														
2E1 Integrated Circuit or Semiconductor	ΥN	PS	NA	PS	AN	PS	Т2а, Т2b, Т3	D, PS	т2а, т2b, тз	D, PS	Т2а, Т2b, Т3	D, PS	т2а, т2b, тз	D, PS
2E2 TFT Flat Panel Display					NA	PS	ON	ON	Т3	PS	Т3	PS	Т3	PS
2E3 Photovoltaics							ON	ON	ON	ON	ON	ON	ON	ON
2E4 Heat Transfer Fluid							ON	ON	ON	ON	ON	ON	ON	ON
2E5 Other (please specify)							NO	ON	NO	ON	NO	NO	ON	ON
2F — Product Uses as Substitutes for Ozone Depleting Substances														
2F1 Refrigeration and Air Conditioning							T2b	AN	ON	ON	ON	ON	ON	N
2F2 Foam Blowing Agents							ON	ON	ON	ON	NO	NO	ON	NO
2F3 Fire Protection							T2b	NA	ON	ON	NO	NO	ON	ON
2F4 Aerosols							ON	ON	NO	ON	NO	NO	ON	NO
2F5 Solvents							T2b	NA	ON	ON	NO	NO	ON	NO
2F6 Other Applications							ON	ON	ON	ON	NO	NO	ON	NO
26 — Other Product Manufacture and Use														
2G1 Electrical Equipment							ON	ON	NO	ON	Т3	PS	NO	NO
2G2 SF_6 and PFCs from Other Product Uses									ON	ON	ON	ON		
$2G3 N_2O$ from Product Uses					ON	ON								
2G4 Other (please specify)	ON	ON	ON	ON	ON	ON	ON	NO	ON	ON	ON	ON	ON	ON

NA = Not Applicable, NE = Not Estimated and NO = Not Occurring Notation keys: T1 = Tier 1, T2 = Tier 2 and T3 = Tier 3 D = IPCC default, CS = Country specific and PS = Plant specific

NATIONAL GREENHOUSE GAS INVENTORY

0 2 9

~	
<u><u> </u></u>	
0	
z	
ш	
>	
Z	
-	
S	
<	
G	
ш	
ŝ	
0	
I.	
Z	
ш	
ш	
£	
G	
1	
<	
Z	
0	
Ξ.	
2	
-	

0 3 0

Greenhouse Gas Source	ö	0_2	Ċ	H 4	Ż	0	H	Cs	ΡF	Cs	S	F ₆	Z	F ₃
and Sink Categories	Method Applied	Emission Factor	Method Applied	Emission Factor	Method Applied	Emission Factor	Method Applied	Emission Factor	Method Applied	Emission Factor	Method Applied	Emission Factor	Method Applied	Emission Factor
2H — Other														
2H1 Pulp and Paper Industry	N	ON	ON	ON	ON	NO								
2H2 Food and Beverages Industry	AN	PS	AN	PS	ΑN	PS								
2H3 Other (please specify)	AN	PS	AN	PS	AN	PS	ON	ON	Q	NO	ON	ON	ON	ON
3 — AGRICULTURE, FORESTRY AND OTHER LAND USE														
3A — Livestock														
3A1 Enteric Fermentation			ШN	ЯE	Ш	NE								
3A2 Manure Management			ШN	ЯE	ШZ	NE								
3B — Land														
3B1 Forest land	Т3	CS	ON	ON	ЦЗ	۵								
3B2 Cropland	T1	Ω	ON	ON	Γ	۵								
3B3 Grassland	NO	ON	ON	ON	ON	NO								
3B4 Wetlands	11	۵	ON	ON	Γ⊥	۵								
3B5 Settlements	Т3	CS	ON	ON	Γ	۵								
3B6 Other land	ON	ON	ON	ON	ON	ON								
3C — Aggregate Sources and Non-CO ₂ Emissions Sources on Land														
3C1 Burning	N	ON	ON	ON	0 N	NO								
3C2 Liming	NE	ШN												
3C3 Urea Fertilisation	NE	ШN												
3C4 Direct N20 Emissions from managed soils					ТЗ	CS								
3C5 Indirect N ₂ O Emissions from managed soils					ТЗ	CS								
3C6 Indirect N2O Emissions from manure management					Ш Z	Ш Z								
3C7 Rice Cultivations			ON	ON										
3C8 Other (please specify)	ON	ON	ON	ON	ON	ON								
Notation keys: T1 = Tier 1, T2 = Tier 2 and T3 = Tier 3	D = IPC() default, CS	3 = Country	specific ar	nd PS = Pla	nt specific	NA = 7	lot Applicab	le, NE = NG	t Estimated	and NO =	Not Occurri	bui	

Greenhouse Gas Source	Ō	02	CF	4 ₄	N	0	ΗĽ	Cs	ΡF	S	SI	F ₆	z	F ₃
and Sink Categories	Method Applied	Emission Factor												
3D — Other														
3D1 Harvested Wood Products	NO	NO												
3D2 Other (Sea)	Т3	CS	ON	ON	ON	ON								
4 — WASTE														
4A — Solid Waste Disposal			T2	D										
4B — Biological Treatment of Solid Waste			ON	ON	ON	ON								
4C — Incineration and Open Burning of Waste ⁷	Т1, Т2а	Ω	LΊ	Ω	T1									
4D — Wastewater Treatment and Discharge			NE	ШN	ЧN	Q								
4E — Other (please specify)	NO	ON	ON	NO	ON	ON								

5 — OTHER 5A — Indirect N₂O emissions from th

Atmospheric Deposition of Nitrogen in NO $_{\rm x}$ and NH $_{\rm 3}$					ON	ON								
5B — Other (please specify)	ON	ON	ON	N	ON	ON	ON	ON	ON	ON	ON	ON	NO	ON
INFORMATION ITEMS														
CO ₂ from Biomass Combustion for Energy Production	Т2а													
lotation keys: 1 = Tier 1, T2 = Tier 2 and T3 = Tier 3	= PCO) default, CS	S = Country	specific and	PS = Plant	. specific	N = N	ot Applicab	le, NE = Noi	: Estimated	and NO =	Not Occur	ring	
T1 method was used for the emissions (waste. For the incineration of sludge. it i	estimation f is based on	from the inc a CDM met	cineration of thodology.	f clinical was	ste and haz	ardous was	ste, while T	2a method	was used	for the emis	ssions esti	imation fro	m incinerat	on of solid

NATIONAL GREENHOUSE GAS INVENTORY

0 3 1

Strict enforcement programmes and air quality monitoring have helped to ensure that air quality remains good.

GLOBAL WARMING POTENTIALS

The estimated CH_4 , N_2O , HFCs, PFCs, SF_6 and NF_3 emissions were converted to CO_2 equivalent (CO_2 eq) using the 100-year time-horizon global warming potential (GWP) values from the IPCC Fifth Assessment Report, as presented in the table below.

Greenhouse Gas	Chemical Formula	GWP
Carbon dioxide	CO ₂	1
Methane	CH_4	28
Nitrous oxide	N ₂ 0	265
Hydrofluorocarbons	HFCs	116-12,400
Perfluorocarbons	PFCs	6,630-11,100
Sulphur hexafluoride	SF_6	23,500
Nitrogen trifluoride	NF ₃	16,100

PRECURSORS

Emissions of precursors such as carbon monoxide (CO), nitrogen oxides (NO_x), nonmethane volatile organic compounds (NMVOCs) and other gases such as sulphur dioxide (SO₂) are not included in the inventory. The levels of these gases in the air are currently monitored by a network of ambient air quality monitoring stations. CO, NO_x and SO₂ are considered air pollutants and are regulated under the Environmental Protection and Management Act (EPMA) which stipulates emission standards for these pollutants. Strict enforcement programmes and air quality monitoring have helped to ensure that the emissions of all these precursors are minimised and that air quality remains good.

SINGAPORE'S EMISSIONS FOR 2016

Singapore's GHG emissions for 2016 totalled 50,702.71 gigagram (Gg) CO_2 eq. This excludes the interim Tier 1b estimate of HFCs emissions from the RAC sector of 6,265.27Gg CO_2 eq in 2016. A breakdown of the total GHG emissions by sources in Gg CO_2 eq⁸ is shown in the tables on pages 34-35.^{9,10}

⁸Using Global Warming Potentials (GWPs) from the Second Assessment Report (SAR), Singapore's GHG emissions for 2016 totalled 50,570.86Gg CO₂ eq (including NF₃). The GWP for NF₃ was referenced from the Fourth Assessment Report due to unavailability in the SAR.

⁹As some figures are considerably small, they may be presented as "0.00" due to rounding. ¹⁰Figures may not add up to the totals due to rounding.

Ì	_	
1	0	

3

4

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH4	N ₂ 0	HFCs
5 _	CO ₂ equivalents (Gg)			
Total (Net) National Emissions	48,263.33	100.38	320.01	469.13
1 — ENERGY	47,746.49	77.55	222.78	
1A — Fuel Combustion Activities	46,660.74	55.64	220.95	
1A1 Energy Industries	20,044.55	9.22	63.94	
1A2 Manufacturing Industries and Construction	18,613.56	11.68	15.78	
1A3 Transport	7,345.58	33.17	140.93	
1A4a Commercial / Institutional	445.29	1.06	0.20	
1A4b Residential	211.77	0.51	0.10	
1B — Fugitive Emissions from Fuels	1,085.75	21.91	1.83	
1B2 Oil and Natural Gas	1,085.75	21.91	1.83	
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	249.94	0.03	23.02	469.13
3 — AGRICULTURE	NE	NE	NE	
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	11.95	NO	5.18	
4 — WASTE	254.95	22.79	69.03	
4A — Solid Waste Disposal		22.79		
4C — Incineration and Open Burning of Waste	254.95	0.00	2.09	
Clinical Waste Incineration	2.53	0.00	0.06	
Hazardous Waste Incineration	252.42	0.00	2.03	
4D — Wastewater Treatment and Discharge		NE	66.95	
INFORMATION ITEMS ¹¹				
CO ₂ from Biomass Combustion for Energy Production	1,707.00			

Notation keys:

NE = Not Estimated and **NO** = Not Occurring

¹¹ According to the 2006 IPCC Guidelines	, information items are not included in the national total GHG emissions.
······································	,

Greenhouse Gas Source	PFCs	SF_6	NF ₃	Total (Net)	
and Sink Categories				National Emissions	
	CO₂ equivalents (Gg)				
Total (Net) National Emissions	1,235.41	93.94	220.51	50,702.71	
1 — ENERGY				48,046.82	
1A — Fuel Combustion Activities				46,937.33	
1A1 Energy Industries				20,117.71	
1A2 Manufacturing Industries and Construction				18,641.02	
1A3 Transport				7,519.68	
1A4a Commercial / Institutional				446.54	
1A4b Residential				212.37	
1B — Fugitive Emissions from Fuels				1,109.49	
1B2 Oil and Natural Gas					
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	1,235.41	93.94	220.51	2,291.98	
3 — AGRICULTURE					
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				17.12	
4 — WASTE				346.78	
4A — Solid Waste Disposal				22.79	
4C — Incineration and Open Burning of Waste				257.04	
Clinical Waste Incineration				2.59	
Hazardous Waste Incineration				254.44	
4D — Wastewater Treatment and Discharge				66.95	
INFORMATION ITEMS ¹¹					
CO ₂ from Biomass Combustion for Energy Production				1,707.00	

Notation keys:

NE = Not Estimated and **NO** = Not Occurring

The breakdown of emissions by type of gas is as shown.

Greenhouse Gas	Emissions (Gg CO ₂ eq)	Percentage of Total Emissions
CO ₂	48,263.33	95.19%
PFCs	1,235.41	2.44%
HFCs	469.13	0.92%
N ₂ 0	320.01	0.63%
NF ₃	220.51	0.43%
CH4	100.38	0.20%
SF ₆	93.94	0.19%

WORKSHEETS

The 2016 GHG inventory worksheets are appended in the Annex.

PREVIOUSLY REPORTED **GHG EMISSIONS**

A breakdown of the total GHG emissions by sources reported in previous NCs and BURs (1994, 2000, 2010, 2012 and 2014) in Gg CO₂ eq can also be found in the Annex.¹²

EMISSIONS FROM INTERNATIONAL BREAKDOWN OF **BUNKERS IN 2016**

International bunkers	CO_2 emissions (Gg CO ₂ eq) ¹³
Aviation	15,524.46
Marine	156,418.03

*Note: As Singapore is a major international air and sea transportation hub, aviation and marine bunker fuels are uplifted in Singapore as part of the services provided to passing aircraft and ships on international routes. Emissions from international aviation and marine bunker fuels are therefore excluded from Singapore's national greenhouse gas inventory and national greenhouse gas totals. Singapore actively supports and contributes to the efforts led by the International Civil Aviation Organization (ICAO) and International Maritime Organization (IMO) in addressing international aviation and maritime transport emissions on a global basis.

EMISSIONS BY IPCC SECTOR

1 - ENERGY

The combustion of fossil fuels to generate energy is the major source of GHG emissions in Singapore. The amount of emissions emitted from the energy sector in 2016 was 48,046.82Gg CO₂ eg. The contribution of emissions from fuel combustion activities and fugitive emissions is as shown.

¹²In line with the IPCC Good Practice Guidance to continually review the GHG inventory ensuring that it is compiled in a consistent manner, emissions estimates may have been updated. ¹³Emission factors from the IPCC Guidelines were applied for the purpose of submission of data on greenhouse gas from

international bunkers to the UNECCC only

⁴Emissions from the incineration of solid waste and incineration of sludge are included under 1A1 Energy Industries.

Tuas South Incineration Plant, one of the waste-to-energy (WTE) plants in Singapore

¹⁵More details on the incineration of solid waste and incineration of sludge are presented under 4 Waste section.

z 0 F ANN. As heat from the incineration of waste is recovered to produce electricity in Singapore, CO_2 , CH_4 and N_2O emissions from waste incineration are reported in the energy sector. According to the IPCC Guidelines, CO₂ emissions from waste incineration are estimated from the portion of the waste that is fossil-based and the non-fossil-based fraction is excluded.

Heat from the incineration of sludge from wastewater processes is also recovered in Singapore, hence CH₄ and N₂O emissions from sludge incineration are reported in the energy sector.¹⁵

1A1 — Energy Industries

In 2016, emissions from electricity and heat generation totalled 20,117.71Gg CO_2 eq. The breakdown of emissions from different fuel types used for electricity and heat generation is as shown.

> NATIONAL GREENHOUSE GAS INVENTORY

49.37%

9,202.68

Electricity consumed in the same year was 48,626.65 gigawatt-hours (GWh). Consumption of electricity by various sectors is as shown.¹⁶

1A2 — Manufacturing Industries and Construction

The majority of the direct emissions from the Manufacturing Industries and Construction sector are from the combustion of primary

fuels by the refining and petrochemical sector. While Singapore does not produce any oil or gas, we are a major oil refining and petrochemical centre that serves the global market.

The breakdown of emissions by fuel type in the Manufacturing Industries and Construction sector is as shown.

Vehicles passing by old and new buildings.

1A3 — Transport

In 2016, Singapore had a network of 3,512km of paved public roads and a population of 956,430 motor vehicles.¹⁸ These motor vehicles consumed diesel, petrol and compressed natural gas (CNG).

% OF TOTAL EMISSIONS FROM MANUFACTURING INDUSTRIES AND CONSTRUCTION EMISSIONS (Gg CO₂ eq) FUEL TYPE REFINERY GAS NATURAL GAS FUEL OIL ÓD DIESEL Ano. PETROLEUM COKE17

¹⁸Source: Motor Vehicle Population By Vehicle Type, Annual Vehicle Statistics 2019, Land Transport Authority: https://www.mytransport.sg/content/mytransport/home/dataMall.html

Marine Gas Oil/Marine Diesel Oil (MGO/MDO) was consumed by harbour and pleasure craft plying within the waters of Singapore.

The breakdown of emissions by fuel type in the transport sector is as shown.

1A4a — Commercial/Institutional &

1A4b — Residential

Emissions from the commercial/institutional and residential sectors were from the use of

LPG and Gas Works Gas,¹⁹ mainly for cooking and hot water systems. The breakdown of emissions by fuel type in the commercial and residential sectors is as shown.

1B2 — Fugitive Emissions from Fuel – Oil and Natural Gas

The Energy Conservation Act (ECA), introduced in 2013²⁰, mandates energy-intensive companies in the industrial sector to monitor and report their energy use and GHG emissions on an annual basis. Companies under the ECA will compute their fugitive emissions²¹ and Industrial Processes and Product Use (IPPU) emissions²² based on the 2006 IPCC Guidelines and submit their GHG reports as part of their regulatory requirements.

The fugitive emissions from oil and natural gas are estimated using a mix of Tier 1, Tier 2 and Tier 3 estimation methods, incorporating plant-specific methodology, activity data and emission factors, and account for 2.19% of the national 2016 GHG inventory.

 ¹⁹Liquefied Petroleum Gas, or LPG, is a mixture of hydrocarbon gases formed as part of the petroleum refining process. Gas Works Gas is primarily hydrogen gas generated through steam reforming of natural gas.
²⁰From 1 January 2019, measurement and reporting requirements for GHG emissions are imposed under the Carbon Pricing Act.
²¹Prior to 2013, fugitive emissions from oil and natural gas were based on company-level surveys.
²²More details on IPPU emissions are presented in the next section, 2 Industrial Processes and Product Use.

Solar panels on the rooftops of Housing & Development Board (HDB) blocks in Singapore

The sources of fugitive emissions compiled from the ECA include, but are not limited to, equipment leaks, evaporation and flashing losses, venting, flaring, incineration and accidental releases. The main contributors to fugitive emissions from oil and natural gas were the flaring of waste gases from process upsets and/or maintenance activities.

2 — INDUSTRIAL PROCESSES AND PRODUCT USE

As described in the "1B2 Fugitive Emissions from Fuel – Oil and Natural Gas" category, the emissions from the Industrial Processes and Product Use (IPPU) sector are compiled from

2B Chemical Industry 2C Metal Industry 2D Non-Energy Products from Fuels and Solvent Use 2E Electronics Industry 2F Product Uses as Substitutes for Ozone Depleting Substances 2G Other Product Manufacture and Use

2H Other

Categories

AND PRODUCT USE

2A Mineral Industry

2 — INDUSTRIAL PROCESSES

the GHG reports submitted by energy-intensive companies in the industrial sector as part of the regulatory requirements under the ECA.

Emissions from the IPPU sector are estimated using a mix of Tier 1, Tier 2 and Tier 3 estimation methods from the 2006 IPCC Guidelines, incorporating plant-specific methodology, activity data and emission factors where data is available. Where default factors were used, they were taken from the 2006 IPCC Guidelines. The report of methods and emission factors used for the emissions estimation for each IPPU source category is as shown earlier on pages 27-31.

Total GHG Emissions % of Total Emissions

(Gg CO ₂ eq)	from IPPU
2,291.98	100.00%
NO	-
148.33	6.47%
С	_
0.45	0.02%
1,642.14	71.65%
396.97	17.32%
3.04	0.13%
101.06	4.41%

Forest Walk at Telok Blangah Hill Park

Founded in 2008, Barramundi Asia Pte Ltd is Singapore's first ocean farm, and draws on world-class sustainable fish farming practices and aquaculture technology to produce premium barramundi. It is certified with Singapore's Good Aquaculture Practices for Fish Farming (GAP-FF) and is the only farm in Singapore that has achieved the internationally recognised Best Aquaculture Practice's (BAP) rating, with the highest score of four stars.

The main source of emissions in the IPPU sector is from the "2E Electronics Industry" category, contributing 71.65% of the IPPU emissions. In the electronics industry, CO_2 , CH_4 , N_2O , HFCs, PFCs, SF₆ and NF₃ were used in the manufacturing processes, with emission control technologies installed in some processes.

This is followed by emissions from the category, "2F Product Uses as Substitutes for Ozone Depleting Substances", which accounts for 17.32% of the IPPU emissions, mainly due to emissions from the usage of HFCs in the solvents application.

Type of Gas	Emissions (Gg CO ₂ eq)	% of Total Emissions from IPPU
PFCs	1,235.41	53.90%
HFCs	469.13	20.47%
CO ₂	249.94	10.91%
NF ₃	220.51	9.62%
SF ₆	93.94	4.10%
N ₂ 0	23.02	1.00%
CH4	0.03	0.00%

3 — AGRICULTURE, FORESTRY AND OTHER LAND USE

Agriculture

The GHG emissions from agriculture are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors. The small agricultural sector focuses mainly on produce such as eggs, fish and vegetables for local consumption to supplement our imports of these items. Singapore is currently conducting a study on GHG emissions for the agriculture sector using both Tier 1 and Tier 2 methodologies. The data from this study can be used to update the GHG inventory for Singapore's agriculture sector in the next BUR.

Land Use, Land-Use Change and Forestry

Singapore continues the upkeep of a system to capture removals and emissions from the Land

The "2H Other" category includes estimated emissions where there is no methodological guidance provided in the 2006 IPCC Guidelines, such as the Food and Beverages industry, Chemical industry – Other, and Other – Shipbuilding industry. For such emissions, plant-specific methodology, activity data and emission factors were used for emissions estimation. In addition, emissions from source categories that are considered confidential are masked under the "2H Other" category.

The breakdown of emissions by type of gas in the IPPU sector is as shown.

Use, Land-Use Change and Forestry (LULUCF) sector. This has been designed to ensure compliance following the approach under the 2006 IPCC Guidelines on LULUCF.

Estimation and reporting of the GHG removals and emissions were carried out for all land use and land-use change categories in Singapore, and assessed for all five carbon pools. The main land-use categories (Forest Land, Cropland, Wetlands and Settlements) were further subdivided into subcategories for assessment of their respective contributions to the removals and emissions. The category Grassland is not relevant for Singapore, as lawns and grassland patches are located in between infrastructure, in urban parks and stocked forests, and subsumed under the Forest Land category or under Settlements using specific emission factors for such low vegetation. The category Other Land does

not occur in Singapore. However, a unique land category "Other" is included to capture emissions/removals mainly from activities such as land reclamation projects.

For all land-use change categories, the IPCC approach of estimating removals and emissions in all pools for a transition period of 20 years continues to be applied. Methods employed in the assessment follow higher tier approaches, where possible. The land use and land-use change matrix was assessed based on a wall-to-wall mapping using very highresolution satellite images. Emission factors of any significant pools of subcategories were estimated with Tier 2 or 3 approaches and on the basis of country-specific data, resulting in out-of-field measurement of tree biomass and soil inventory and estimated by modelling approaches. The C stock change rates of biomass and soil in land-use change areas to the Forest Land subcategory "Mangroves" were taken from the Wetlands Supplement and complemented by country-specific C stocks from published literature. Biomass C stocks of Cropland were estimated using IPCC default values due to the insignificant share of this land-use category in Singapore. The default soil C stock and management factors for cropland were taken from the 2006 IPCC Guidelines.

Subsequent to the 3rd BUR, we have made further enhancements to our remote sensing methods to increase the accuracy of our estimates. Singapore is a highly dynamic country with frequent land-use changes within a short period of time. As such, land has been frequently converted to other land-use subcategories more than once within a 20-year transition period. This may lead to potential overestimates of greenhouse gas emissions and removals from unrealistic fluctuations in carbon pools. By performing a series of checks, intermediate land-use changes were then corrected to ensure smoother transitions, such that each land-use change relates to a more realistic estimate of carbon stock changes.

The total annual net emissions for the reporting year 2016 for the LULUCF sector of Singapore amounted to 17.12Gg CO₂ eq (including N₂O). A summary breakdown of the contributions from each land-use category is represented below.

ANNUAL CHANGE IN CARBON STOCKS, GQ CO.

Land-Use Category	Living Biomass (A)	Dead Organic Matter (B)	Soil (C)	CO ₂ removals/ emissions (D=A+B+C)	CH ₄ (Gg CO ₂ eq)	N ₂ O (Gg CO ₂ eq)
3B1 Forest Land	-40.16	-3.66	-12.09	-55.91	NO	0.00
3B2 Cropland	2.01	0.29	-0.51	1.80	NO	0.00
3B3 Grassland	NO	NO	NO	NO	NO	NO
3B4 Wetlands	0.70	0.10	0.78	1.58	NO	NO
3B5 Settlements	29.53	7.86	25.73	63.12	NO	5.18
3B6 Other Land	NO	NO	NO	NO	NO	NO
3D Other ²³	0.51	0.00	0.85	1.36	NO	NO
TOTAL*	-7.42	4.59	14.77	11.95	NO	5.18

*Note: Figures including additions may not tally due to rounding difference.

NO = Not Occurring

²³ "3D Other" category is included to capture mainly emissions from carbon losses to the sea due to land reclamation measures, while removals from land reclamation measures are included in the respective land-use subcategories.

4 - WASTE

4A — Solid Waste Disposal & 4C — Incineration and Open Burning of Waste

Solid Waste Management^{24,25}

Singapore has adopted waste-to-energy incineration technology to reduce the volume of waste disposed of at landfill since the 1970s. As heat from the incineration of waste is recovered to produce electricity, according to the 2006 IPCC Guidelines, CO₂, CH₄ and N₂O emissions from waste incineration are reported in the energy sector. Biogenic CO₂ emissions from the incineration of non-fossil-based waste are excluded from the national total emissions estimates and are included as an information item in the energy sector.

Today, all incinerable wastes that are not recycled are disposed of at the waste-to-energy incineration plants. Only non-incinerable waste and ash from the incineration process are disposed of at the offshore Semakau Landfill. Hence, CH₄ emissions from the Semakau Landfill are insignificant.

CH₄ and N₂O emissions were estimated based on the amount of waste incinerated at the waste-to-energy incineration plants.

Sludge Incineration²⁴

From 1985 to 2008, treated sludge was applied on reclaimed land sites as a soil conditioner. Residual CH₄ emissions were due to anaerobic decay of the organic contents in the sludge from these sites. Since 2009, direct methane emissions from sewage sludge have been significantly reduced by incinerating the

²⁷As some figures are considerably small, they may be presented as "0.00" due to rounding.

sludge.²⁶ The CH₄ emissions from sewage sludge disposal in 2016 were 22.79Gg CO_2 eq.

As heat from the incineration of sludge is recovered to produce electricity, according to the 2006 IPCC Guidelines, CH₄ and N₂O emissions from incineration of sludge are reported in the energy sector.

Clinical and Hazardous Waste Incineration

Facilities engaged in clinical and hazardous waste incineration in Singapore are regulated by the National Environment Agency (NEA) under the Environmental Public Health Act (EPHA). The activity data submitted by these facilities to NEA was used to estimate the emissions of CO₂, CH₄ and N₂O.

The breakdown of emissions by type of gas from clinical waste incineration is as shown.²⁷

Type of Gas	Emissions (Gg CO_2 eq)	% of Total Emissions from Clinical Waste Incineration
CO ₂	2.53	97.74%
N ₂ 0	0.06	2.26%
CH4	0.00	0.00%

The breakdown of emissions by type of gas from hazardous waste incineration is as shown.26

Туре	Emissions	% of Total Emissions
of Gas	(Gg CO_2 eq)	from Hazardous
		Waste Incineration

CO ₂	252.42	99.20%
N ₂ 0	2.03	0.80%
CH4	0.00	0.00%

Notation key:

²⁴Emissions from the incineration of solid waste and incineration of sludge are included under 1A1 Energy Industries ²⁵As accurate data points on the percentage composition of individual waste streams were not available prior to 2001, the data points prior to 2001 were estimated based on an extrapolation of waste composition from 2001 to 2016. The extrapolated percentages of each waste stream were then multiplied by the total amount of waste incinerated in the corresponding years to obtain the respective waste amounts. GHG emissions were then computed based on the 2006 IPCC Guidelines. ²⁶In accordance with the 2000 IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, emissions from the incineration of sewage sludge for year 2010 were estimated by PUB based on the backward trend extrapolation of available data from September 2010 to December 2010. The emissions were from the sludge incineration plant operated by ECO-SWM which was registered as a CDM project on 13 September 2010. From 2012 onwards, emissions from the incineration of sewage sludge were estimated by PUB based on the forward trend extrapolation of available data from 2010 and 2011.

Today, Pulau Semakau is not only a landfill, but also a rich coastal and marine biodiversity haven harbouring flourishing natural ecosystems like mangroves, seagrass meadows and coral reefs. This shows that landfill operations and preservation of the natural environment can be achieved at the same time.

4D — Wastewater Treatment and Discharge

Used water, from both domestic and nondomestic sources, is conveyed via sewers to water reclamation plants (WRPs) for treatment. At the WRPs, the used water is treated together using the activated sludge process. A by-product of this treatment process is waste sludge which is fed into digesters for stabilisation. The biogas produced in the digesters is used as fuel to either generate electricity to power the treatment facilities or to dry dewatered sludge further. CO₂ produced from the combustion of biogas is not counted in the national inventory as it is part of the natural carbon cycle of decomposition. Fugitive CH, emission is negligible as all unused biogas is flared. Emissions from wastewater treatment are reported at an aggregated level and not differentiated by the waste sources.

 N_2O emissions were from human sewage and estimated based on annual per capita protein intake data from the UN Food and Agriculture Organisation (FAO).²⁸ The N_2O emissions from wastewater treatment and discharge in 2016 were 66.95Gg CO₂ eq.

KEY CATEGORY ANALYSIS

A key category analysis (KCA) is conducted for the GHG inventory to identify major sources of GHG emissions, so that the resources available for inventory preparation are prioritised to improve GHG emissions estimates for those major sources.

The KCA is performed for emission sources, in terms of CO_2 equivalent emissions. Key categories are identified using the Approach 1 level assessment and trend assessment from the 2006 IPCC Guidelines, whose emissions when summed in descending order of magnitude add up to 95% of the total GHG emissions. Disaggregation to lower levels was not considered necessary as it splits important aggregated categories into small sub-categories that are no longer key.

The key categories identified in the tables overleaf are performed with LULUCF. There are no changes to the key categories identified from the Approach 1 level and trend assessment, with and without LULUCF.

The biogas produced in the digesters at Changi Water Reclamation Plant (above) is used as fuel to either generate electricity to power the operation of the treatment facilities or dry dewatered sludge further to become dried sludge.

²⁸Singapore's 2016 annual per capita protein intake is estimated from Southeast Asia's average per capita protein intake (Source: UN Food and Agriculture Organisation (FAO)) as Singapore-specific figures are not available.

LEVEL ASSESSMENT

Of the 13 key categories identified, 10 key categories originate from fuel combustion activities which primarily produce CO₂ emissions. The main contributor to Singapore's year 2016 GHG inventory is CO₂ emissions from the combustion of natural gas (34.2%) for electricity and heat generation. The other three key categories identified are PFCs from

Α	В		С	D	E	F
IPCC Category Code	IPCC Category	Fuel Type	Greenhouse Gas	Emissions (Gg CO_2 eq)	Percentage Contribution	Cumulative Total of Column E
1A1	Fuel Combustion Activities - Energy Industries	Natural Gas	CO ²	17,330.58	34.2%	34.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Refinery Gas	CO2	9,193.98	18.1%	52.3%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Natural Gas	CO2	4,932.17	9.7%	62.0%
1A3b	Fuel Combustion Activities - Transport - Road Transportation	Diesel	CO ₂	4,631.09	9.1%	71.2%
1A3b	Fuel Combustion Activities - Transport - Road Transportation	Motor Gasoline	CO ²	2,419.49	4.8%	75.9%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Fuel Oil	CO2	2,239.75	4.4%	80.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Diesel	CO2	1,602.12	3.2%	83.5%
1A1	Fuel Combustion Activities - Energy Industries	Solid Waste ²⁹	CO ₂	1,542.32	3.0%	86.6%
2E	Industrial Processes and Product Use - Electronics Industry	_	PFCs	1,235.41	2.4%	89.0%
1B2	Fugitive Emissions from Fuels	Oil and Natural Gas	CO2	1,085.75	2.1%	91.1%
1A1	Fuel Combustion Activities - Energy Industries	Coal	CO ₂	1,026.71	2.0%	93.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Petroleum Coke ³⁰	CO2	645.54	1.3%	94.4%
2F	Industrial Processes and Product Use - Product Uses as Substitutes for Ozone Depleting Substances	_	HFCs	396.97	0.8%	95.2%

²⁹According to the 2006 IPCC Guidelines, CO₂ emissions from solid waste incineration are estimated from the portion of waste that is fossil-based.
³⁰Due to confidentiality reasons, CO₂ emissions from the combustion of LPG and Gas Works Gas are included under Petroleum Coke

the Electronics Industry which are used and emitted by semiconductors and integrated circuits manufacturing companies, fugitive CO₂ emissions from oil and natural gas due to flaring of waste gases from process upsets and/or maintenance activities, and HFCs from Product Uses as Substitutes for Ozone Depleting Substances category which are mainly used and emitted in the solvent application.

TREND ASSESSMENT

Ten key categories are identified in the trend assessment, with the highest trend seen in the decrease in fuel oil combustion for electricity and heat generation (41.0%), followed by the increase in natural gas combustion for electricity and heat generation (25.5%). This natural gas and fuel oil trend is also observed in the manufacturing industries and construction sector, where the natural gas combustion increased by 9.2% while the fuel oil combustion decreased by 7.2% respectively.

А	В		С	D	Е	F	G	Н
IPCC Category Code	IPCC Category	Fuel Type	Green- house Gas	Year 2000 Emissions	Year 2016 Emissions	Trend Assess- ment	Percentage Contribution to Trend	Cumulative Total of Column G
1A1	Fuel Combustion Activities - Energy Industries	Fuel Oil	CO ₂	16,965.21	42.18	0.57	41.0%	41.0%
1A1	Fuel Combustion Activities - Energy Industries	Natural Gas	CO ₂	2,766.79	17,330.58	0.35	25.5%	66.5%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Natural Gas	CO ₂	NO	4,932.17	0.13	9.2%	75.7%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Fuel Oil	CO ₂	4,650.91	2,239.75	0.10	7.1%	82.8%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Refinery Gas	CO ₂	4,781.20	9,193.98	0.08	5.5%	88.3%
1A1	Fuel Combustion Activities - Energy Industries	Coal	CO ₂	NO	1,026.71	0.03	1.9%	90.2%
1B2	Fugitive Emissions from Fuels	Oil and Natural Gas	CO ₂	132.91	1,085.75	0.02	1.7%	91.9%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Diesel	CO ₂	609.93	1,602.12	0.02	1.5%	93.4%
2E	Industrial Processes and Product Use - Electronics Industry	_	PFCs	519.23	1,235.41	0.01	1.0%	94.5%
1A1	Fuel Combustion Activities - Energy Industries	Solid Waste ³¹	CO ₂	848.81	1,542.32	0.01	0.8%	95.3%

NO = Not Occurring

³¹According to the 2006 IPCC Guidelines, CO₂ emissions from solid waste incineration are estimated from the portion of waste that is fossil-based.

Sembcorp Cogen @ Banyan, a gas-fired cogeneration facility located on Jurong Island's Banyan area, has a gross capacity of 400 megawatts of power and 200 tonnes per hour of process steam.

UNCERTAINTY ANALYSIS

An uncertainty analysis is conducted for the GHG inventory to prioritise national efforts to reduce the uncertainty of inventories and guide decisions on methodological choice. Currently, efforts are being undertaken to quantitatively estimate the uncertainty of the GHG inventory. The results will be included in future BURs when ready.

Singapore's national GHG inventory was qualitatively assessed based on three levels of confidence, namely H for High confidence in estimation, M for Medium confidence in estimation and L for Low confidence in estimation.

99.8% of the GHG data has a confidence level of either "medium" or "high". A large proportion of these emissions is from fuel combustion activities. The collection of fuel combustion, fugitive emissions, IPPU, clinical and hazardous waste data through Acts under the EMA and the National Environment Agency strengthened the confidence in the data and formed the basis for the high confidence in the greenhouse gas emissions. Data collected under surveys was assessed to be of medium confidence level. Quality control and quality assurance procedures outlined in the 2006 IPCC Guidelines were also applied to minimise human errors during inventory compilation and to ensure that the inventory is complete, accurate and consistent.

The categories that were assessed to be of lower confidence accounted for about 0.2% of total GHG emissions. The conservative level of confidence reflected the uncertainties for these emissions estimates. Methodological issues such as proxy data used to estimate N₂O emissions from wastewater treatment and discharge resulted in a lower level of confidence. Additionally, as the GHG emissions from the LULUCF sector are based on subtractions between emissions and removals in pools, subcategories and across subcategories, this leads to a relatively high uncertainty even when higher tier approaches are applied, as is the case for Singapore. The highly dynamic Settlements subcategories and the subcategory land-use change to Forest Land contribute most to the total uncertainty of the LULUCF sector.

CONFIDENCE LEVELS OF DATA^{32,33}

Greenhouse Gas Source and Sink Categories	Confidence Level	% of Total GHG Emissions
1 — ENERGY		94.8%
1A — Fuel Combustion Activities		
1A1 Energy Industries	Н	39.7%
1A2 Manufacturing Industries and Construction	М	36.8%
1A3 Transport	М	14.8%
1A4a Commercial / Institutional	Н	0.9%
1A4b Residential	Н	0.4%
1B — Fugitive Emissions from Fuels		
1B2 Oil and Natural Gas	Н	2.2%
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	Н	4.5%
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	М	0.0%
4 — WASTE		0.7%
4A — Solid Waste Disposal	L	0.0%
4C — Incineration and Open Burning of Waste		
Clinical Waste Incineration	Н	0.0%
Hazardous Waste Incineration	Н	0.5%
4D — Wastewater Treatment and Discharge	L	0.1%

Notation keys:

L = Low, M = Medium, H = High

RECALCULATIONS

Singapore's national GHG inventory time series were recalculated using the methodologies outlined in the 2006 IPCC Guidelines, with methods and emission factors used for emissions estimation summarised on pages 27-31. Emissions estimates for past inventories were recalculated with updated activity data and emission factors, where applicable. NF₃ has also been included into the national GHG inventory, totalling seven types of GHGs reported in this 4th BUR. To ensure time series consistency, efforts were taken to use the prescribed splicing techniques from the 2006 IPCC Guidelines (e.g. surrogate data) to ensure that the inventories were recalculated where historical data was unavailable.

Generally, the transition to the 2006 IPCC Guidelines, inclusion of NF₃ gas and change in global warming potentials (GWPs) values from SAR to AR5 has resulted in a 1-2% decrease in GHG emissions across the time series for the later years. The increase in GHG emissions in the years 1994 and 2000 was largely due to revision in data or unavailability of data in the earlier years which has now been included through splicing techniques. The table on the next page provides the results and comparison of the recalculated national GHG inventory, for the years reported in previous NCs and BURs.

S/N Net National Guidelines Used / Emissions Reference for **GWPs / Inclusion** of NF₃ Revised 1996 IPCC Net National 1 Guidelines / SAR Emissions reported in 26,800 4th NC / 3rd BUR 2 Net National 2006 IPCC Guidelines / Emissions AR5 / NF, included (before splicing 27,482 techniques were applied) % DIFFERENCE BETWEEN ROWS 1 AND 2: 2.5 3 Net National 2006 IPCC Guidelines / Emissions AR5 / NF, included reported in 4th BUR 28,115 (with splicing techniques applied) % DIFFERENCE BETWEEN ROWS 1 AND 3: 4.9

TIME SERIES OF GREENHOUSE GAS EMISSIONS (2000-2016)

From 2000 to 2016, Singapore's economy grew at a compounded annual growth rate (CAGR) of 5.2%, while real GDP levels (in chained (2015) dollars) increased by 126% from S\$193 billion in 2000 to S\$437 billion in 2016. In the same period, Singapore's GHG emissions grew at a slower rate with a CAGR of 1.7%, and an increase of 30.2% (11,750Gg CO₂ equivalent) from 2000 to 2016.

As an open trade-oriented economy, Singapore's GDP growth volatility is much higher than that of larger economies.³⁴ Singapore's GDP is sensitive to changes in the global economy as emissions attributable to economic activity make up a large proportion of Singapore's emissions. Hence, our emissions trajectory can

REPORT

ш

DA

5

³²As some figures are considerably small, they may be presented as "0.0" due to rounding. ³³Figures may not add up to the totals due to rounding.

1994	2000	2010	2012	2014	
(Gg CO ₂ eq)					
26,800.37	38,329.57	47,062.48	48,567.65	50,908.13	
27,482.27	38,338.65	46,065.96	47,801.44	49,943.35	
2.5%	0.0%	-2.1%	-1.6%	-1.9%	
28,115.53	38,952.34	46,142.83	47,909.83	49,943.35	
4.9%	1.6%	-2.0%	-1.4%	-1.9%	

be affected by external economic conditions and events. For example, the uptick in emissions in 2010 can be attributed to Singapore's strong recovery after the Global Financial Crisis in 2008 and 2009, when GDP grew by 14.5% in 2010 after growing marginally at 0.1% in 2009.

Overall, emissions intensity improved by 42% while energy intensity improved by 37% from 2000 to 2016. Some of the key policy initiatives implemented during this period include a switch in fuel mix from fuel oil to natural gas, which is a cleaner fuel source, as well as various schemes promoting energy efficiency. These include the BCA Green Mark Scheme, a green building rating system, and co-funding and financing schemes that promote the development of environmentally friendly buildings.

Time Series of GHG Emissions Emissions GDP (Billion) in Chained MtCO₂ eq (2015) Dollars 110.0 450 100.0 400 90.0 350 80.0 300 70.0 GDP: CAGR of 5.2% 250 60.0 GHG Emissions: GAGR of 1.7% 50.0 200 40.0 150 30.0 100 20.0 50 10.0 0.0 2008 2010 2012 2013 2000 2002 2005 2001 2009 2017 2015 2016 2004 2003 2006 2018 200, GDP (Billion) in Chained (2015) Dollars Emissions MtCO₂ eq

Time Series of Energy and Emissions Intensity

PREPARATION OF THE GREENHOUSE GAS INVENTORY

The preparation of the national greenhouse gas inventory is a multi-agency effort led by the NEA. An overview of the four-stage greenhouse gas inventory preparation process is shown above.

Quality control and quality assurance checks for the compilation of data and computation of GHG emissions were developed based on the 2006 IPCC Guidelines for National GHG Inventories.

An Emissions Data Monitoring and Analysis (EDMA) system has been developed to facilitate the inventory compilation process. The system has been designed to receive input and activity

STAGE 4

Endorsement by MRV Taskforce after completion of QC/QA by agencies

QA checks on computation of emissions conducted by an independent team within NEA

data from different data sources, generate emissions estimates, facilitate quality control checks and provide the relevant government agencies with secure access to the emission database.

The system has been designed for efficient electronic data management and archival of all data used in the estimation of emissions to ensure the continuity and security of the national greenhouse gas inventory. The data management functions of the system include archival and storage of past activity data and emission factors, archival and storage of data source descriptions, methodology descriptions and reference materials, and one-stop integrated access to the documentation of data sources, methodology descriptions and reference materials.

1 — Quality Control and Quality Assurance for the Collection / Compilation of Data Data required for the national greenhouse gas inventory is collected/compiled through

SOURCES OF DATA FOR GREENHOUSE GAS INVENTORY IG Data Owner Energy Market Authority National Environment Agency PUB, Singapore's National Water Agency Energy Market Authority National Environment Agency Energy Market Authority National Environment Agency Maritime and Port Authority of Singapore Department of Statistics Energy Market Authority National Environment Agency Cs, National Environment Agency National Parks Board PUB, Singapore's National Water Agency National Environment Agency PUB, Singapore's National Water Agency Food and Agriculture Organisation of the United Nations (FAO)

IPCC Sector	Type of GH			
1 — ENERGY				
1A — Fuel Combustion Activities				
1A1 Energy Industries ³⁵				
1A2 Manufacturing Industries and Construction				
1A3 Transport	CO ₂ , CH ₄ , N ₂ O			
1A4a Commercial / Institutional				
1A4b Residential				
1B — Fugitive Emissions from Fuels				
1B2 Oil and Natural Gas	CO ₂ , CH ₄ , N ₂ O			
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	CO2, CH4, N2O, HF PFCs, SF6, NF3			
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	CO ₂ , N ₂ O			
4 — WASTE				
4A — Solid Waste Disposal	CH4			
4C — Incineration and Open Burning of Waste				
Clinical Waste Incineration	со сн м о			
Hazardous Waste Incineration	00 ₂ , 011 ₄ , N ₂ 0			
4D — Wastewater Treatment and Discharge	N ₂ O			

³⁵CO₂, CH₄ and N₂O emissions from the incineration of solid waste, and CH₄ and N₂O emissions from the incineration of sludge are included under 1A1 Energy Industries.

Opposite page: Sky Greens' vertical vegetable farming system is engineered to produce at least five times more leafy greens than conventional farms, with the ability to support farming on non-arable land. The system features tall aluminium frames that contain planting troughs, which are rotated by a water-pulley system. This technology was the result of a successful R&D collaboration with then-Agri-Food & Veterinary Authority (AVA) of Singapore, a partnership that led to the set-up of Singapore's first commercial vertical farm.

legislation and surveys administered by the various government agencies (data owners). The sources of data for the national greenhouse gas inventory are as follows:

QC for Data

The quality control checks conducted by the data owners are summarised below:

	QC Activity	Actions by Data Owner
Units	Check that parameters and units are correctly recorded and that appropriate conversion factors are used	Analysed and verified data trends for potential unit or conversion errors
Database	Check for transcription errors in data	Analysed data trends
		Highlighted deviations and outliers, and verified them for potential data input errors and reference coding errors
	Check the integrity of database files	Verified data processed in the database against original data files to ensure consistency and data integrity
	Check for consistency in data between categories	Verified the data mapping tables and files used to ensure that mapping and data consistencies between different categories are maintained. Data mapping tables adopt Singapore classification standards
	Check completeness	Streamlined and aligned data sources used
		Included new data streams where applicable
	Check time series consistency	Re-processed updated data in the system and recompiled sub-totals and totals from the updated data
		Analysed time series of totals to ensure data quality standards are achieved
		Adopted appropriate splicing techniques to ensure a consistent time series
Compilation	Check that the movement of inventory data among processing steps is correct	Verified and checked sub-totals against totals when computing aggregated figures
	Review of internal documentation and archiving	Conducted regular data compilation reviews and documented these processes
		Archived and stored the data in the EDMA system periodically
Analysis	Trend checks	Analysed time series of totals to ensure data quality standards are achieved

QA for Data

Data collected is verified by an independent team within each agency, which is not involved in the data collection and compilation process. After these quality assurance checks, agencies will submit their quality control and quality assurance documentation together with their data to NEA for computation/conversion to greenhouse gas emissions.

2 — Quality Control for the Computation of Emissions

Greenhouse gas emissions are computed by the greenhouse gas inventory team within NEA based on the activity data provided by agencies. The quality control checks on emissions computed from source data are verified by persons who are not involved in the emissions computation. These procedures help to minimise human errors during inventory compilation, and ensure the production of complete, accurate and consistent inventories. The quality control procedures that were conducted by the greenhouse gas inventory team within NEA are summarised overleaf.

Quality control checks have also been incorporated into the EDMA system. These include checks on the acceptable range of data input and factors, as well as percentage differences compared to emissions from previous years.

	of Emissions	
Units	Check that parameters and emission units are correctly recorded and that appropriate conversion factors are used	Cheo thro
Database	Check for transcription errors in data input and reference	Verif data
		Anal
		High pote
	Check for consistency in data between categories	Verif usec the I
		Verit appl
	Check completeness	Stre
Calculations	Check that the movement of inventory data among processing steps is correct	Verit cons
		Anal
		High pote
	Review of internal documentation and archiving	Che emis docu
		Con assu proc
Analysis	Trend checks	Anal
		High

QC Activity on Estimation

3 — Quality Assurance for Computation of Emissions

The quality assurance procedures comprise checking of transcription of data between databases, verification of data, emission factors, conversion factors and equations, including checking of the congruence of totals and sub-totals.

The computed emissions are verified by an independent NEA team that is not involved in the computation of the greenhouse gas emissions. This quality assurance team conducts a review of the inventory compilation process. The review involves the verification of methods, data, processes and assumptions for

FOURTH BIENNIAL UPDATE REPORT

Actions

ecked the congruence of units and conversion factors oughout the worksheets

rified data processed in the worksheets against original ta files to check for transcription errors

alysed data trends

ghlighted deviations and outliers, and verified them for tential data input errors and reference coding errors

rified that the emission factors and conversion factors ed throughout the inventory are consistent with those in e IPCC Guidelines where applicable

rified that local factors are used consistently where plicable

reamlined and aligned data sources used

rified that the equations used for the computation are nsistent with the IPCC Guidelines

alysed data trends

ghlighted deviations and outliers, and verified them for tential data input errors and reference coding errors

ecked that the sources, methodologies, assumptions, nission factors and quality control procedures are cumented

nducted regular reviews of data sources, methodologies, sumptions and emission factors and documented these pocesses

alysed time series of totals

ghlighted and verified deviations for potential errors

the preparation of the inventory and recommendation of areas for improvement as necessary. During the review, needs for institutional strengthening and capacity building are identified and planned for to improve future work on the national greenhouse gas inventory. Training is proposed as necessary for new and existing officers involved in the preparation of the national greenhouse gas inventory.

4 — Endorsement

An inter-agency working committee (MRV Taskforce) will review the quality control and quality assurance procedures conducted by agencies, and endorse the national greenhouse gas inventory. 0 6 0 The Secondary Jetty at the SLNG Terminal has been modified to accommodate small LNG carriers, which help to facilitate the use of LNG for power generation in remote locations in the region, as well as marine fuel for ships.

MITIGATION MEASURES

-

Singapore is committed to reducing emissions across all sectors to drive sustainable growth.

CHAPTER 4

IL BRITS PROPERTY.

STATES AND A STATES

INTRODUCTION

Under our 2009 Copenhagen pledge, Singapore is committed to reducing emissions by 16% below 2020 business-as-usual (BAU) levels. Having ratified the Paris Agreement on 21 September 2016, Singapore has also formalised our 2030 pledge which builds on our 2020 commitment. As stated in our Nationally Determined Contribution (NDC), Singapore intends to peak emissions at 65MtCO₂ eq around 2030. While these are challenging targets given our limited potential for alternative energy sources that could reduce emissions on a significant scale, Singapore is on track to meet our 2020 pledge.

SINGAPORE'S APPROACH TO REDUCING EMISSIONS

Energy is a strategic resource for Singapore as we are almost completely reliant on the import of oil and gas for our energy needs. Recognising that energy is a scarce resource, we price fuel and electricity according to supply and demand. We also do not subsidise energy costs. This policy of pricing energy correctly helps to incentivise firms and households to use energy wisely, minimising energy wastage and overconsumption, thus helping to control emissions.

Since the early 2000s, Singapore has taken steps to use a cleaner fuel mix for electricity generation, switching from fuel oil to natural gas.

To further reduce emissions, we will harness the "Four Switches" of Singapore's Energy Story to achieve our vision of a future with clean and efficient energy:

- 1st Switch: Natural gas
- 2nd Switch: Solar
- 3rd Switch: Regional power grids
- 4th Switch: Emerging low-carbon
- alternatives (e.g. CCUS and hydrogen).

Given Singapore's limited options for alternative energy sources, improving energy efficiency is also one of our key mitigation strategies. This will require our households and businesses to be more energy-conscious and make adjustments to their daily activities, choices and processes. In addition to reducing emissions, greater energy efficiency also leads to cost savings. The Government will continue to raise awareness and build capabilities to improve energy efficiency across sectors. A major part of this effort involves addressing sector-specific barriers using incentives or regulatory measures where appropriate.

MEASURES TO REDUCE EMISSIONS

Measure #1 — Shifting to Cleaner Energy Sources

We have switched from fuel oil to natural gas, with the proportion of Singapore's electricity generated by natural gas rising from 26% in 2001 to around 95% in 2019. The grid emission factor of the power system has improved in tandem. Today, Singapore ranks among the countries with the highest percentage use of natural gas for electricity generation.

Traditionally, Singapore has relied heavily on natural gas piped from Malaysia and Indonesia for power generation. Since May 2013, Singapore has imported liquefied natural gas (LNG) from global gas markets through our LNG terminal. Having access to both LNG and

Following the success of the floating solar PV test bed at Tengeh Reservoir in 2016 (above), a large-scale solar PV system will be installed by 2021 that will generate sufficient green energy to meet the daily operational needs of the local water treatment plants.

piped natural gas has helped to diversify and secure our energy sources and further increase the share of clean natural gas in our fuel mix.

We are also increasing our use of solar energy. Among the renewable energy options, solar energy remains the most promising option for Singapore. While the amount of solar panels installed in Singapore is still small, its deployment has been growing steadily. As of 2020, Singapore has around 400MWp of solar photovoltaics (PV) installed, compared to 15.3MWp in 2013. For solar energy to be adopted at scale, consumers ultimately have to find it cost-competitive vis-à-vis the electricity which they can buy from the grid. We are actively investing in R&D and test-bedding to improve the efficiency and lower the price of solar technologies and systems for adoption on a larger scale.

To facilitate this, the Economic Development Board (EDB) had previously implemented solar capability building schemes such as the Solar Capability Scheme (SCS) and Clean Energy Research & Testbedding (CERT) Programme. These had built up capabilities among our local solar companies in the engineering design and installation of solar PV systems. R&D funding was also directed towards building capabilities in solar PV manufacturing, systems and grid integration. Moving forward, Singapore will continue to invest in R&D to develop low-cost, high-efficiency cells and modules, urban solar system capabilities and grid integration solutions for intermittent renewables.

On the demand side, the Government embarked on the SolarNova programme which aggregates demand for solar PV deployment across public sector buildings and spaces, to catalyse the growth of the solar industry in Singapore. Four leasing tenders totalling 236MWp have been awarded since 2015, with a fifth tender to be awarded in 2020 for 60MWp of solar energy. The SolarNova programme forms part of Singapore's plan to reach at least 2GWp of installed solar PV capacity by 2030. Singapore has also announced plans to bring forward the deployment of solar energy to achieve 1.5GWp of solar deployment by 2025. In addition, we have adopted other innovative approaches to further push the envelope for solar deployment, such as the use of floating PVs, offshore PVs and building-integrated PVs.

PUB, Singapore's National Water Agency, is actively deploying solar panels on the roofs of water infrastructure and at reservoirs. These are part of PUB's plans to reduce our carbon footprint. In 2016, PUB and EDB launched a 1MWp floating solar PV test bed at Tengeh Reservoir. Propelled by this success. PUB deployed two floating solar PV systems of 1.5MWp each at Bedok and Lower Seletar Reservoirs, which will be commissioned in 2020. PUB will also deploy Singapore's first large-scale floating solar PV system of 60MWp at Tengeh Reservoir, which is one of the world's largest single floating solar PV systems. Upon completion in 2021, the system will generate sufficient green energy to meet the daily needs of Singapore's waterworks. With this system, we can eliminate 32ktCO₂ eq per year. Studies are also ongoing on the feasibility of deploying floating solar PV systems at Upper Peirce and Kranji Reservoirs.

In addition, the EMA has been enhancing the market and regulatory framework to facilitate solar deployment in a sustainable manner. Some of the key enhancements include providing greater clarity on the licensing framework for solar energy and streamlining market registration and settlement procedures to reduce compliance cost. The Government has also worked with research institutes to review and update Singapore's estimated solar technical potential.³⁶ This helps to increase public and industry awareness of solar energy in Singapore's context and support deployment. EMA will continue to work with the industry to facilitate greater deployment of solar energy in the power system.

These measures to shift Singapore to cleaner energy sources are projected to achieve 4.18Mt of CO2 eq abatement by 2020, with an estimated 4.08Mt of CO₂ eq abatement in 2018.

Measure #2 — Improving Industrial Energy Efficiency

As industry is the largest energy-consuming sector in Singapore, improving industrial energy efficiency is key to reducing our emissions. In 2016, our energy intensity was 40.4ktoe/ S\$ billion or 56.4ktoe/US\$ billion.37 This was achieved through the help of schemes introduced by the Government to overcome market barriers to the adoption of energy-efficient practices, such as limited capital, split incentives, bounded rationality and lack of information.

The Government is committed to encouraging the industry to adopt energy-efficient technologies through a mix of incentives, capability building and regulations.

Since 2005, the Government has been providing grants to help industrial facilities to review their facility design to incorporate energy and resource efficiency measures, and carry out energy assessments to identify and implement energy efficiency opportunities. Examples of these schemes include the Resource Efficiency Grant for Energy (REG(E))³⁸ and the Energy Efficiency Fund (E2F)³⁹ which offset part of the initial capital investments in energy-efficient technologies. To further support industrial facilities in being more energy-efficient, funding support for the adoption of energy-efficient technologies under REG(E) and E2F was enhanced from the previous cap of up to 30% to up to 50% of qualifying costs from 1 January 2019. In October 2019, the Government launched a new grant under the E2F to encourage companies to implement energy management information systems (EMIS). EMIS can help companies more accurately monitor and analyse their energy usage using real-time data, to identify performance gaps and opportunities for improvement.

To develop and build up expertise in energy efficiency, Singapore has also conducted energy efficiency studies and put in place national schemes for building energy efficiency capabilities within our workforce. The Energy Efficiency Opportunities (EEO) Assessor Certification Scheme jointly developed by the Government and the Institution of Engineers, Singapore (IES) in 2018 aims to certify qualified professionals to conduct energy efficiency opportunities assessments. The Energy Efficiency Technology Centre (EETC) has been set up to help companies, in particular Small and Medium-sized Enterprises (SMEs), uncover and implement energy efficiency opportunities, and train a pipeline of industrial energy efficiency engineers to support the future lowcarbon economy. The centre is a collaboration between the Government and the Singapore Institute of Technology (SIT).

The Energy Conservation Act (ECA), introduced in 2013⁴⁰, mandates energy-intensive companies in the industry sector to appoint a qualified energy manager, monitor and report their energy use and GHG emissions, and submit energy efficiency improvement plans on an annual basis. The ECA has since been further enhanced. With effect from 2018, companies regulated under the ECA are required to adopt specified methodologies for GHG measurement and reporting, in line with best practices and internationally recognised

NUS School of Design & Environment, winner of the Green Mark Award for Buildings - Zero Energy Building 2019

standards. Companies investing in new and major expansions of energy-intensive industrial facilities are required to review the facility design to identify technically and economically feasible energy efficiency improvement opportunities. These companies must also report measured energy performance of key energy-consuming systems in their facilities. From 2021, companies regulated under the ECA will be required to put in place a structured energy management system, and periodically assess energy efficiency opportunities at existing industrial facilities. In addition, minimum energy performance standards have been introduced to phase out inefficient industrial electric motors (2018) and watercooled chilled water systems at industrial premises (2020). Since the enactment of the ECA in 2013, the industry sector's energy efficiency has improved steadily, with the annual increase in efficiency improving from 0.4% in 2014 to 0.95% in 2018.

Overall, we had expected to achieve 1.43Mt of CO₂ eq abatement from these energy efficiency measures by 2020. In 2018, we achieved an estimated 1.08Mt of CO₂ eq abatement, and will continue to undertake the ongoing measures.

Measure #3 — Greening Buildings

As a highly urbanised island state, the greening of buildings is an important part of Singapore's

⁴⁰From 1 January 2019, measurement and reporting requirements for GHG emissions are imposed under the Carbon Pricing Act.

³⁶Technical potential refers to the estimated achievable capacity (expressed in terms of megawatt) of a renewable energy technology that is available for development after accounting for topographic limitations, usable space, system performance etc. ³⁷Figures cited are calculated from domestic data sources. Conversion from S\$ to US\$ is based on exchange rates as of July 2020. ³⁸Replacing the Grant for Energy Efficiency Technologies (GREET), the predecessor of the Productivity Grant for Energy Efficiency that was introduced in 2016.

⁹Consolidates the previous Energy Efficiency Improvement Assistance Scheme (EASe) and other incentive schemes administered by the NEA to better support a range of energy efficiency efforts, from energy-efficient design of new facilities, energy assessments of existing facilities, to energy-efficient technologies investment.

mitigation strategy. To address barriers to adopting energy-efficient technologies in buildings⁴¹, the Government launched the BCA Green Mark scheme in 2005, a green building rating system designed specifically for buildings in the tropics. This scheme formed the backbone of Singapore's first Green Building Masterplan (GBMP), which was rolled out in 2006 to encourage, enable and engage industry stakeholders to adopt new green buildings. The first edition of the GBMP targeted new buildings to encourage developers to embed sustainability as part of a building's life cycle from the outset. Subsequent editions of the GBMP focused on greening the larger stock of existing buildings and engaging building occupants to change energy consumption behaviour.

The Government has employed the use of both regulations and incentives to drive the green building movement. Developers and owners of new buildings, or existing buildings undergoing major retrofitting works, are required to achieve minimum environmental sustainability standards. New building projects in key strategic areas such as Marina Bay,

Green Gross Floor Area (GFA) of buildings in Singapore (Cumulative)

Downtown Core and Jurong Lake District are required to meet even higher standards. Existing prescribed buildings⁴² are required to submit building information and energy consumption data annually. To encourage buildings to consciously adopt measures to improve their energy efficiency, the information from commercial buildings, healthcare facilities and educational institutions are publicly disclosed. In addition, existing office, hotel and retail buildings with gross floor area of more than 15,000 square metres have to achieve minimum environmental sustainability standards when a cooling system is installed or retrofitted as well as carry out three-yearly energy audits on building cooling systems. This legislation was further enhanced in 2017 to cover medium-sized buildings of more than 5,000 square metres.

Regulation is complemented with incentives and financing schemes to encourage developers to achieve higher tier Green Mark ratings, and to assist building owners in financing the high upfront retrofitting cost. As of 30 March 2020, we have greened more than 40% of our buildings by gross floor area

⁴¹These barriers include limited capital and split incentives between building developers and owners.
⁴²Building types include commercial buildings (offices, hotels, retail buildings and mixed developments), healthcare facilities, education institutions, civic and community institutions, places of worship, and sport and recreation.

and are on track to meeting our target of 80% by 2030.

The mitigation measures in the building sector are projected to achieve 0.87-1.55Mt of CO₂ eq abatement by 2020, with an estimated 0.929Mt of CO₂ eq abatement in 2018.

Measure #4 — Shifting Travel Demand to Low-Emission Modes and Reducing Vehicular Emissions

Public transport is the most energy-efficient mode of powered transport. Singapore's target is for the public transport modal share during the morning and evening peak hours to reach 70% by 2020 and 75% by 2030, up from 59% in 2008. We achieved 67% in 2017. Singapore further aims to establish Walk-Cycle-Ride (WCR) transport modes, comprising active mobility and public and shared transport modes, as the preferred way to travel by 2040. All journeys to the nearest neighbourhood centre using WCR modes of transport will take no more than 20 minutes, while nine in 10 of peak period WCR journeys, such as between the home and workplace, will be completed in less than 45 minutes.

To encourage the use of public transport, the length of the rail network will expand from 230km in 2017 to 360km by 2030, with eight in 10 households to be within a 10-minute walk from a train station. We will also progressively implement Transit Priority Corridors that serve as dedicated, continuous bus lanes and deploy smarter traffic control solutions to reduce passengers' commute times. Additionally, we will maintain an open and contestable pointto-point market that provides commuters better access to taxis and private hire cars, and encourage car sharing to give the populace more choices to make journeys without having to own a car.

Singapore will accelerate the building of cycling paths and active mobility infrastructure to make cycling and walking more convenient and attractive. By 2040, our cycling path network will be extended to more than 1,000km from 440km in 2019. Beyond the 200km of sheltered walkways from transport nodes to homes and public amenities built as of now, a further 150km of these sheltered walkways will be added by 2040.

The ownership and usage of private vehicles will continue to be managed through various taxes as well as fees and charges that reflect the competing needs for our scarce land. Prospective vehicle owners are required to bid and pay for a limited pool of Certificates of Entitlement, which allows a holder to purchase a vehicle and use it for 10 years. Since 2018, we have capped private car and motorcycle growth at zero. To manage car usage, charges are imposed on all vehicles for using congested roads during peak hours throughout the year.

To encourage the use of vehicles with lower emissions, the Carbon Emissions-Based Vehicle Scheme (CEVS) and the Fuel Economy Labelling Scheme (FELS) were introduced in 2013. The FELS provides information on the fuel economy of vehicles for a more informed decision on vehicle purchase, while the CEVS provided rebates for low-emission cars and imposes surcharges on high-emission cars. The CEVS was replaced by the Vehicular Emissions Scheme (VES), with a new Vehicular Emissions label, in January 2018. In addition to CO₂, the VES includes four additional pollutants (i.e. hydrocarbons, carbon monoxide, nitrogen oxides and particulate matter) in the assessment of new cars, taxis and newly imported used cars for rebate or surcharge based on the worst-performing pollutant. Given the promising results of the VES, a similar scheme, the Commercial Vehicle Emissions Scheme, will be introduced for light goods vehicles.

Singapore is working on the large-scale adoption of green vehicles. By 2040, we aim to phase out internal combustion engine (ICE) vehicles and have all vehicles running on cleaner energy. The public sector itself will take the lead and progressively procure and use cleaner energy vehicles; and from 2020, all new public bus purchases will be cleaner energy buses, including electric or hybrid buses. We are introducing policies and initiatives to encourage the adoption of electric vehicles (EVs). We will launch an 6 8 The Government is encouraging the use of cycling and walking for short distance trips. Today, 200km of sheltered walkways from transport nodes to homes and public amenities have been built; a further 150km of these sheltered walkways will be added by 2040.

A wide path for both those on bicycle and on foot to use

「「「「「「「」」」」

As part of the move towards a 100% cleaner energy public bus fleet by 2040, the Land Transport Authority (LTA) has progressively deployed electric buses for passenger service from early 2020 onwards.

Electric Vehicle Early Adoption Incentive (EEAI) for the next three years, from 1 January 2021 to 31 December 2023. The EEAI will lower the upfront cost of an EV through the provision of rebates, narrowing the upfront cost gap between electric and ICE vehicles. We will also expand our public charging infrastructure to support the growth of the EV population.

By making WCR modes the preferred way to travel, managing private car usage and proliferating green vehicles, Singapore will further reduce vehicular emissions and enhance the overall carbon efficiency of our land transport system.

Overall, the mitigation measures in the transport sector are projected to achieve 1.56Mt of CO_2 eq abatement by 2020, with an estimated 1.24Mt of CO_2 eq abatement in 2018.

Measure #5 — Improving Energy Performance Standards of Household Appliances and **Promoting Energy Efficiency to Households**

The household sector accounts for about 14.3% of the total electricity consumption in Singapore. If households reduce their electricity consumption by using energy-efficient appliances, they will help to reduce Singapore's greenhouse gas emissions and contribute towards action to address climate change, and also enjoy reduction of their utility bills. To help consumers make more informed purchasing decisions, the Government introduced the Mandatory Energy Labelling Scheme (MELS) in 2008, which requires suppliers of energy-consuming household appliances to affix their products with energy labels to identify energy-efficient models. To date, the MELS covers air conditioners, refrigerators, TVs, clothes dryers and lamps. In 2019, the MELS was expanded to cover more lamp types such as common compact fluorescent lamps with non-integrated ballasts (CFLni), fluorescent tubes, and their LED direct replacements.

Regulations on Minimum Energy Performance Standards (MEPS) were introduced for refrigerators and air conditioners in 2011 to raise the average energy efficiency of household appliances by removing energyinefficient models from the market. Only appliance models that meet the MEPS are allowed for sale. This protects consumers

from being locked into the high energy costs of operating energy-inefficient appliances. Since 2019, MEPS cover air conditioners, refrigerators, clothes dryers, lamps and fluorescent lamp ballasts. Since the introduction of the MELS and MEPS, the average energy efficiency of refrigerators as well as air conditioners has improved by 47% and 42% respectively. This translates to annual household energy savings of about S\$270 million or US\$196 million⁴³.

In 2017 and 2018, the Government organised the "Energy-Saving Challenge" to encourage households to be more energy-efficient and practise energy-saving habits such as setting the air conditioner temperature at 25°C. Participants who reduced their electricity use by 1% or more for the Challenge period stood a chance to win prizes from the campaign sponsors. The Challenge received 7,000 entries in 2017 and more than 15,000 in 2018. Participants in the two campaigns saved a total of 800,000kWh.

The "Energy-Saving Challenge" campaign encourages the public to save electricity at home.

⁴³Based on the total sales of air conditioners and refrigerators between 2009 and 2018

The mitigation measures in the household sector are projected to achieve about 0.71-1.07Mt of CO₂ eq abatement by 2020, with an estimated 0.73Mt of CO₂ eq abatement achieved in 2018.

Measure #6 — Reducing Emissions from Waste and Wastewater Treatment

The Government is also looking to reduce emissions from the waste and water sectors. Apart from incinerating our waste and wastewater sludge, which reduces methane emissions from landfills, we also intend to increase our recycling rate to 70% by 2030. Our overall recycling rate was 61% in 2018.

Other measures to reduce emissions are through maximising energy efficiency in operations and increasing energy production and recovery. One key initiative in progress is the co-location of a used water treatment

EXAMPLES OF SINGAPORE'S CLIMATE **MITIGATION MEASURES**

plant (Tuas Water Reclamation Plant (TWRP)) and an Integrated Waste Management Facility (IWMF) which is expected to be completed by 2025. The integration of these two facilities is collectively known as the Tuas Nexus and provides an opportunity to harness process synergies in treating used water and solid waste, reaping the benefits of a Water-Energy-Waste nexus. The Tuas Nexus will be the first WRP of its kind in Singapore to treat both used water and food waste in the same plant to produce biogas. The co-digestion of used water sludge with food waste can produce 40% more biogas, due to the synergistic effect of co-digestion. The biogas produced will be used to enhance the overall thermal efficiency and electricity production at the Tuas Nexus. In return, the electricity

generated will be sufficient for both TWRP and IWMF, with excess electricity exported back to the grid.

We project the mitigation measures in the waste and water sectors to achieve 0.15Mt of CO_2 eq abatement by 2020, with an estimated 0.14Mt of CO₂ eq abatement in 2018.

CARBON TAX

Singapore implemented a carbon tax, the first carbon pricing scheme in Southeast Asia, on 1 January 2019. The carbon tax applies to all facilities emitting 25ktCO₂ eq or more greenhouse gas emissions in a year without exemption, and covers around 80% of our national emissions.

The carbon tax provides an economy-wide price signal to encourage GHG emission reduction where it makes the most economic sense. The carbon tax is part of, and complements, Singapore's suite of measures to reduce emissions.

The carbon tax rate is set at S\$5 or US\$3.64/ tCO_2 eq in the first instance from 2019 to 2023. This serves as a transition period for facilities to implement energy efficiency and carbon emission reduction projects. The carbon tax rate will be reviewed by 2023, with the intention to increase it to a rate of between S\$10 and S\$15/tCO₂ eg (or US\$7.27 and US\$10.91/tCO₂ eq) by 2030. The Government is prepared to spend more than the expected carbon tax revenue in the initial five years to help companies improve their energy and carbon efficiency by adopting greener and cleaner technologies and practices.

INTERNATIONAL MARKET MECHANISMS

As a non-Annex I Party, Singapore is eligible to participate in the Clean Development Mechanism (CDM) of the Kyoto Protocol which allows GHG emission reduction from registered projects implemented to generate certified emission reduction (CER) credits.

As of December 2019, Singapore has six registered CDM projects.

Information on the six registered CDM projects was reported earlier in Singapore's 3rd NC and 1st BUR. Singapore will continue to monitor international developments and study how we can leverage robust international market mechanisms to complement our domestic mitigation efforts and position Singapore

as a carbon services hub to harness new economic opportunities.

DOMESTIC MEASUREMENT, **REPORTING AND VERIFICATION**

The domestic measurement, reporting and verification (dMRV) of Singapore's mitigation actions is a whole-of-government effort.44 Each government agency is responsible for monitoring, measuring and documenting the progress of the mitigation actions under its purview.

Agencies usually utilise relevant data collected from official surveys, required under various Acts, for dMRV purposes. Data collected from companies and/or building owners is then verified by the lead agencies. For example, power generation companies are required under the Electricity Act to measure and report the quantity of fuel used for electricity generation monthly. The lead agency for the power sector, EMA, will verify the reported data through QA/QC procedures in accordance with the International Energy Agency (IEA), Intergovernmental Panel on Climate Change (IPCC) and United Nations Statistics Division's guidelines and requirements. EMA uses this data to monitor emissions from the electricity generation sector. The aggregated data is also available through EMA's annual "Singapore Energy Statistics" report.

Information collected by the lead agencies is consolidated by the Long-Term Emissions and Mitigation Working Group (LWG) secretariat annually. LWG will then assess the effect of the various mitigation measures and track Singapore's progress in meeting our mitigation pledge and objectives.

LIST OF	- MITIGATIO	N MEASURE	S						
Table 1 —	- Shifting to Clea	iner Energy Sour	Ces						
Mitigation Action	Objectives	Description	Progress of Implementation / Steps taken or envisaged to achieve action	Nature of Action	2020 Quantitative Goal (MtCO ₂ eq)	Methodologies and Assumptions	Gas coverage	Progress Indicators	Results Achieved
Fuel mix switch a way from fuel oil	To switch fuel mix away from fuel oil, towards natural gas for power generation.	Facilitating the utilisation of natural gas for power generation. Abatement is expected from an increase in the share of natural gas in the generation mix from mix from BAU case to 90% by 2020.	Completed 4MtCO ₂ eq of abatement has been achieved due to the increase in the share of natural gas in the generation mix from approximately 70% in the BAU case to 95%. Since 2005, the power generation industry's repowering to natural gas, the introduction of the LNG terminal and LNG vesting has contributed to the increase in the share of natural gas to 95% in 2016.	Infrastructure development	0.4	Natural gas is expected to form more than 90% of Singapore's fuel mix for power generation in 2020 and is the basis of the projected abatement in 2020. The carbon abatement achieved by this measure is estimated based on the amount of fuel oil displaced by cleaner natural gas for power generation.	CO	Fuel Mix	Increase in the share of natural gas to 95% in 2018. Estimated abatement achieved in 2018: 4.0Mt
Solar installation from existing schemes	To facilitate the adoption of solar photovoltaics (PVs).	Encouraging more R&D, test-bedding and deployment of solar PV.	Ongoing Singapore's target is to raise the adoption of solar power in our system to 350 megawatt-peak (MWp) by 2020. The whole-of- government effort to facilitate solar adoption includes capability development, such as HDB's solar capability building programme for public housing, multi-agency solar-leasing tenders; and EDB's incentive schemes for R&D and test beds, such as the Solar Capability Scheme (SCS), Clean Energy Research & Testbedding (CERT) Programme and floating PV project. EDB and HDB also launched the SolarNova programme, which aims to aggregating solar deployment in Singapore by promoting and aggregating solar demand across government buildings and spaces.	Technology	0.18	The carbon abatement achieved by this measure is based on the emissions from Combined Cycle Gas Turbines (CCGTs) that would have resulted from generating the amount of electricity displaced by solar energy.	CO	Installed Solar Capacity	Estimated abatement achieved in 2018: 0.078Mt
Table 2 —	- Improving Indu	strv Enerav Effic	iencv and Promoting Use of	Cleaner Fuel	م				
Mitigation Action	Objectives	Description	Progress of Implementation / Steps taken or envisaged to achieve action	Nature of Action	2020 Quantitative Goal (MtCO ₂ eq)	Methodologies and Assumptions	Gas coverage	Progress Indicators	Results Achieved
Cogeneratio	n To encourage investment in cogeneration plants.	Encouraging cogeneration plant investments, which will reduce carbon emissions through increasing energy efficiency in electricity and steam generation, through the provision of incentives to encourage companies to improve their energy efficiency.	Ongoing Three cogeneration plants have been constructed.	Incentive	0.67-0.73	0.67-0.73Mt of carbon mitigation by 2020 is assumed to be delivered by three to four cogeneration plants in the petroleum and petrochemical sector. Abatement achieved per cogeneration plant is based on technical estimates and information provided by companies. As part of the application process for incentives, companies are required to report the carbon abatement resulting	⁵ CO	Number of cogeneration plants, total funding given out, abateme achieved calculated through data collection/ audits.	Estimated abatement achieved in 2018: int 0.59Mt

	Estimated abatement achieved in 2018: 0.42Mt
	Total funding given out, abatement achieved calculated through data collection/ audits.
from their investments. Verification checks are done by Professional Engineers, Singapore Certified Energy Managers or Qualified Energy Services Specialists after project completion.	Abatement calculated based on carbon abatement from the implementation of projects supported under the schemes. Abatement arising from incentives will be audited by Professional Engineers or Qualified Energy Services Specialists shortly after the commissioning period. All other incentives are verified by company voluntary reporting.
	0.31-0.59
	Incentive
	Completed Companies have been supported to improve energy Efficiency. In 2017, the Energy Efficiency Improvement Assistance (EASe) and other existing incentive schemes were consolidated to form the new Energy Efficiency Fund (E2F) to better support a range of energy efficiency efforts.
	Encouraging energy efficiency retrofits in the manufacturing sector through incentives, and private sector financing of energy efficiency projects.
	To encourage energy efficiency and consequently reduce emissions from the manufacturing sector.
	Manufacturing Energy Efficiency

MITIGATION MEASURES

0 7 5

Table 2 — Improving Industry Energy Efficiency and Promoting Use of Cleaner Fuels

Results Achieved	Estimated abatement achieved in 2018: 0.070Mt	Estimated abatement achieved in 2018: 0.00028Mt
Progress Indicators	Abatement achieved calculated through data collection/ audits.	Power Usage Effectiveness of Data Centres.
Gas coverage	t co ₂	CO
Methodologies and Assumptions	Abatement calculated based on carbon abatemer achieved from the displacement of existing fuel by use of cleaner fuel types.	Abatement calculated based on Power Usage Effectiveness (PUE) improvements. PUE is a measure of how efficiently a Data Centre uses its power and is the ratio of a Data Centre's total facility power needs to that of all Information and Communications Technology (ICT) equipment.
2020 Quantitative Goal (MtCO ₂ eq)	0.07	Up to 0.04
Nature of Action	Incentive	Incentive
Progress of Implementation / Steps taken or envisaged to achieve action	Completed Two wood-chip boilers totalling 60 tons per hour of steam production capacity have been constructed.	Ongoing One Data Centre has been supported under this scheme to improve energy efficiency.
Description	Encouraging third-party utility providers to switch to cleaner fuel for steam generation.	Encouraging energy efficiency retrofits in Data Centres through incentives.
Objectives	To encourage fuel switching in third-party utility providers.	To encourage energy efficiency and consequently reduce emissions from Data Centres.
Mitigation Action	Fuel switching in industry	Data Centre EE

Table 3 —	Greening Bu	lidings							
Mitigation Action	Objectives	Description	Progress of Implementation / Steps taken or envisaged to achieve action	Nature of Action	2020 Quantitative Goal (MtCO ₂ eq)	Methodologies and Assumptions	Gas coverage	Progress Indicators	Results Achieved
Regulatory measures and incentives encourage aencourage aencourage aencourage aencourage scheme scheme	To improve energy efficiency of buildings.	New Buildings Legislating owners of new buildings to achieve minimum environmental sustainability standards, and encouraging them to achieve a Green Mark rating beyond the minimum standard through incentives. Developments in identified key strategic areas are required to achieve a higher Green Mark rating of Gold ^{Plus} or Platinum.	Ongoing New Buildings Since 2008, owners of new buildings have been required by legislation to achieve minimum environmental sustainability standards equivalent to the previous Green Mark Certified standard. The current Green Mark ratings for new buildings are: Gold/ Gold ^{Pus} / Platinum, differentiated by a set of criteria relating to green initiatives and energy savings of the building. In addition, stricter Green Mark standards have been imposed in government land sales conditions for certain areas, e.g. Marina Bay, Jurong Lake District.	and Incentives	0.87-1.55	The abatement is calculated by the difference between the BAU emission values (i.e. no legislation/ incentives) projected for the new building stock in 2020, and the emission values after legislation and incentives have been implemented.	CO	Through electricity consumption and building information data collected through the Building Energy Submission System (BESS).	Estimated abatement achieved in 2018: 0.93Mt

Incentive schemes have been introduced to encourage greater adoption of energy-efficient technologies in new buildings.

As of 30 March 2020, we have greened more than 40% of Singapore's buildings by gross floor area and are on track to meeting our target of 80% by 2030.

Existing Buildings Since 2012, owners of existing buildings have been required by legislation to achieve minimum environmental sustainability standards when the buildings undergo major retrofits.

In addition, existing prescribed buildings are required to submit building energy consumption data annually. Prescribed building types are also required to submit energy audits on building cooling systems every three years.

Existing Buildings Legislating existing building owners to achieve minimum environmental sustainability standards when undergoing major retrofits, or installing or replacing the building cooling system to improve the energy efficiency of their facilities. Also, building owners are incentivised to achieve a Green Mark rating beyond the minimum standard through co-funding and financing schemes.

Co-funding and financing schemes have also been introduced to further improve the energy efficiency in existing buildings. For example, the Building Retrofit Energy Efficiency Financing (BREEF) scheme provides financing options to building owners to address the upfront retrofitting costs required.

MITIGATION MEASURES

0 7 7

_

S
ш
£
5
4
m
Ξ.
<
z
0
_
⊢ .
<
G
_
E.
-
Σ

7

Table 4 — Shifting Travel Demand to Low-Emission Modes and Reducing Vehicular Emissions

Results Achieved	Estimated abatement achieved in 2018: 0.76Mt	Estimated abatement achieved in 2018: 0.11Mt	Estimated abatement achieved in 2018: 0.37Mt
Progress Indicators	Public transport modal share.	OPC take-up rate.	Increase in registration of cars in lower carbon bands and reduction in registration of cars in the higher carbon bands.
Gas coverage	CO CO	CO ⁵	CO
Methodologies and Assumptions	Mitigation effect is calculated as the difference between the total energy consumed for (i) the projected BAU travel demand and the modal split; and (ii) the actual travel made and the modal split.	Abatement is calculated based on the number of off-peak cars and the difference between the average carbon emissions of a normal car and those of an OPC. This is calculated against BAU projections which does not include the roll-out of such an OPC scheme.	Mitigation effect is calculated based on the increased quantity of cars/taxis purchased in the CEVS/ VES lower carbon bands (i.e. the rebate bands or similar cleaner cars), compared to the historical rates, and the average carbon emission reduction for the CEVS/ VES bands. This is calculated against BAU projections, which are the emissions computed considering the quantity of cars/ taxis purchased in the absence of CEVS/VES rebates/surcharges.
2020 Quantitative Goal (MtCO ₂ eq)	0.78	0.16-0.20	0.60
Nature of Action	Combination of infrastructure, regulations, incentives, technology and education	Combination of infrastructure, incentives and education	Legislation and Incentives
Progress of Implementation / Steps taken or envisaged to achieve action	Ongoing Singapore's target is for the public transport modal share during the morning and evening peak hours to reach 70% by 2020 and 75% by 2030, up from 59% in 2008. We achieved 67% in 2017. The length of the rail network will increase further from 230km in 2017 to 360km by 2030.	Ongoing The off-peak car schemes will be tweaked, as necessary. By 2040, our cycling path network will be extended to more than 1,000km, from 440km in 2019. Beyond the 200km of sheltered walkways from transport nodes to homes and public amenities built as of now, a further 150km of these sheltered walkways will be added by 2040.	Ongoing The CEVS and the FELS were introduced in 2013. The CEVS was replaced by the VES with a new Vehicular Emissions label in January 2018. In addition to CO ₂ , the VES includes four additional pollutants (hydrocarbons, carbon monoxide, nitrogen oxides and particulate matter) in the assessment of new cars, taxis and newly imported used cars for rebate or surcharge based on the worst- performing pollutant.
Description	Expanding the rail and bus network, building integrated transport hubs, implementing more bus priority measures; and managing travel demand and demand and planning better as detailed in the Land Transport Master Plan 2040.	Implementing schemes that limit the use of cars to off- peak periods, and rolling out various initiatives that encourage walking and cycling.	Implementing the mandatory Fuel Economy Labelling Scheme (FELS) and the Carbon Emissions- Based Vehicle Scheme (CEVS)/ Vehicular Emissions Scheme (VES).
Objectives	To increase usage of public transport, the most energy- efficient mode of powered transport.	To reduce the use of cars as a means of transport.	To encourage the take-up of more energy- efficient vehicles.
Mitigation Action	Increasing the public transport modal share	Promoting Off-Peak Cars (OPCs) and non- motorised transport, e.g. walking and cycling	Car/ Taxi fuel efficiency – CEVS

		nergy renomina		Аррнансе		ung Energy Eniciency to House	ellolds		
Mitigation Action	Objectives	Description	Progress of Implementation / Steps taken or envisaged to achieve action	Nature of Action	2020 Quantitative Goal (MtCO ₂ eq)	Methodologies and Assumptions	Gas coverage	Progress Indicators	Results Achieved
Minimum Energy Performance Standards (MEPS) for household appliances – air cons, fridges, lighting, clothes dryers	To improve the overall energy efficiency of appliances in the market.	Disallowing the supply of inefficient appliances that fall short of specified minimum energy efficiency levels.	Ongoing MEPS for air conditioners and fridges were implemented in September 2011 and raised between 2013 and 2017 respectively. MEPS for clothes dryers were implemented in April 2014. MEPS for general lighting were implemented in July 2015. The MELS was extended to common CFLni and fluorescent tubes, and their LED direct replacements in November 2019. MEPS were raised to phase out incandescent	Legislation	0.71-0.79	The carbon emissions arise from the energy use of home appliances. The emissions in two scenarios, the BAU and Policy scenarios, are calculated. In both scenarios, the annual hours of usage of home appliances is assumed to remain the same as that of the reference year, 2005. In the BAU scenario, since there are no policies affecting purchasing decisions, it is assumed that there is no change in the purchasing pattern of home appliances by energy efficiency rating over the forecast period 2006-2007. The emissions are	CO	Annual purchase pattern of models by tick-rating.	Estimated abatement achieved in 2018: 0.73Mt *MEPS commenced in 2011.

lanse to priase out incandescent lamps in November 2019. MEPS were introduced for fluorescent lamp ballasts in November 2019.

In the Policy scenario, purchasing decisions are modified by mandated standards and energy labelling. The purchasing pattern of home appliances by energy efficiency rating is obtained from market data on purchases of products of different efficiency levels. This together with estimated lifespans of the appliances is used to calculate the mix of appliances by energy efficiency rating in the stock. The carbon emissions of the stock are calculated based on energy consumption. period 2000 2000 the predicted calculated based on the predicted stock of appliances (initial stock plus purchases less displaced and retired stock), annual hours of usage and annual energy consumption based on energy efficiency rating. Promotion 0-0.28 Household energy efficiency awareness programmes (e.g. media publicity, energy-saving contests, energy efficiency roadshows) have been rolled out since 2008. **Ongoing** The MELS for air conditioners and fridges was introduced in 2008 and extended to clothes dryers in 2009, TVs in 2014 and general lighting in 2015. Promoting the purchase of energy-efficient appliances through the Mandatory Energy Labelling Scheme (MELS) for household appliances and outreach efforts. To promote energy efficiency to households. Promotion of energy efficiency to households

The emissions abatement is the difference in carbon emissions between the BAU and Policy scenarios.

MITIGATION MEASURES

0 7 9

Table 6 — Mitigation Action	- Reducing Emi Objectives	Description	Progress of Implementatior Steps taken or envisaged to achieve action	n/ Nature of Action	2020 Quantitativ Goal (MtCO ₂ eq)	Methodologies an Passumptions	ld Gas coveraç	Progres le Indicato	s Results ors Achieved	
Wastewater sludge disposal by incineration	To reduce methane gas emissions from wastewater sludge.	Incinerating wastewater sludge, a by-product of water reclamation plants, which would otherwise be disposed of at landfills.	Ongoing Since 2009, ECO Special Waste Management and Waste Management and Sumitomo Mitsui Bank Corporation hae Corporation hae contracted to perform sludge incineration. 800 Super has also been contracted from 2018 (together with ECO-SWM) to perform sludge incineration.	Infrastructure Development	0.10	Assumptions are referenced from IPC(methodology "Tool to determine the methane emissions avoided from disposs of waste at a solid waste disposal site", and abatement is calculated from the total amount of slud incinerated (based on actual weight of sludge disposed of at landfill site, and by ECO Special Waste Management and 800 Super).	C de al C	Amount of sludge incinerat	Estimated abatement ed. achieved in 2018: 0.14MtCO ₂ e	σ.
Increase overall recycling rate	To increase the overall recycling rate to 65% by 2020. The overall recycling rate in 2018 was 61%.	Mandatory waste reporting and submission of waste reduction plan for large commercial premises, starting with large hotels and shopping malls, has been implemented in 2014.	Ongoing Affected premises have submitted their waste report.	Legislation	0.05	Emissions and abatement will be calculated using the amount of waste incinerated and waste recycling rate: compared against th BAU projections.	C C C T 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Recycling	Estimated abatement achieved in 2018: OMt	
		Right waste disposal pricing.	Currently under evaluation.	Market-based instrument	1					
Table 7 —	· Cross-Sector	al Measures								
Mitigation Action	Objectives	Description P1	rogress of Implementation / teps taken or envisaged to chieve action	Nature 2 of Action 6 6	020 Luantitative A oal MtCO2 eq)	Aethodologies and \ssumptions	Gas coverage	Progress Indicators	Results Achieved	
Carbon tax	To complement and support our mitigation package.	The carbon tax provides an economy-wide price signal U: to encourage GHG emission raduction, while take action where it makes the most economic sense.	ngoing he carbon tax came into force n 1 January 2019, at S\$5 or S\$3.64/tC02eq. The carbon tax ate will be reviewed by 2023, with ne intention to raise the carbon ix rate to between S\$10 and S\$15/tC02eq (or US7.27$ and S\$10.91/tC02 eq) by 2030.	Market-based N instrument tt tt SS ff ff SS SS	ot pplicable as a re carbon rix is a cross- a ectoral complement rher policies ther policies v r meeting s r meeting s f	he carbon tax covers round 80% of our ational emissions, nd applies to large irect industrial mitters from the nantidecturing, power eneration, water and easte management ectors. It is applied niformly and without xemptions. Taxable	CO2, N2O, CH4, SF6, HFCS, PFCS	Carbon intensity and energy efficiency of the Singapore economy.	Not applicable a the carbon tax i not a standalon measure. The results from having a carbon tax are demonstrated through the abatement from sector-specific policies and measures.	ω ο e

FOURTH BIENNIAL UPDATE REPORT

0 8 0

MITIGATION MEASURES

uniformly and without exemptions. Taxable facilities are required to submit a Monitoring Plan, as well as annual Emissions Reports must be verified by an accredited external auditor.

MITIGATION MEASURES

ANNEX TO FOURTH BIENNIAL UPDATE REPORT

2016 Greenhouse Gas Inventory Worksheets Greenhouse Gas Summary Tables for 2014, 2012, 2010, 2000 and 1994

GREENHOUSE GAS SUMMARY TABLE FOR YEAR 2016

Greenhouse Gas Source	Net CO ₂	CH_4	N_2O	HFCs	PFCs	SF_6	NF_3
and Sink Categories		(Gg)			CO ₂ equiva	lents (Gg)	
Total National Emissions and Removals	48,263.21	3.59	1.21	469.13	1,235.41	93.94	220.51
1 — ENERGY	47,746.49	2.77	0.84				
1A — Fuel Combustion Activities	46,660.74	1.99	0.83				
1A1 Energy Industries	20,044.55	0.33	0.24				
1A2 Manufacturing Industries and Construction	18,613.56	0.42	0.06				
1A3 Transport	7,345.58	1.18	0.53				
1A4 Other Sectors	657.05	0.06	0.00				
1A4a Commercial / Institutional	445.29	0.04	0.00				
1A4b Residential	211.77	0.02	0.00				
1A5 Non-Specified	NO	NO	NO				
1B — Fugitive Emissions from Fuels	1,085.75	0.78	0.01				
1B1 Solid Fuels	NO	NO	NO				
1B2 Oil and Natural Gas	1,085.75	0.78	0.01				
1B3 Other Emissions from Energy Production	NO	NO	NO				
1C — Carbon Dioxide Transport and Storage	NO						
1C1 Transport of CO ₂	NO						
1C2 Injection and Storage	NO						
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	249.82	0.01	0.09	469.13	1,235.41	93.94	220.51
2A — Mineral Industry	NO	NO	NO				
2B — Chemical Industry	148.33	NO	NO	NO	NO	NO	NO
2C — Metal Industry	С	NO	NO	NO	NO	NO	NO
2D — Non-Energy Products from Fuels and Solvent Use	0.45	NO	NO				
2E — Electronics Industry	С	0.01	0.09	72.16	1,235.41	90.90	220.51
2F — Product Uses as Substitutes for Ozone Depleting Substances	NO	NO	NO	396.97	NO		NO
2G — Other Product Manufacture and Use	NO	NO	NO	NO	NO	3.04	NO
2H — Other	101.04	0.00	0.00				

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 Notation keys: C = confidential information, NE = not estimated and NO = not occurring.
 Due to confidentiality reasons,

 CO₂ emissions from 2C Metal Industry is included under 2H Other; and

 CO₂ emissions is included under CH₄ in the Electronics Industry (2E).

Greenhouse Gas Source	Net CO ₂	CH_4	N ₂ 0	HFCs	PFCs	SF ₆	NF_3
and Sink Categories		(Gg)			CO ₂ equiva	lents (Gg)	
Total National Emissions and Removals	48,263.21	3.59	1.21	469.13	1,235.41	93.94	220.51
3 — AGRICULTURE, FORESTRY AND OTHER LAND USE	11.95	NE	0.02				
3A — Livestock		NE	NE				
3B — Land	10.58	NO	0.02				
BC — Aggregate Sources and Non-CO2 Emissions Sources on Land	NE	NO	NE				
3D — Other	1.36	NO	NO				
4 — WASTE	254.95	0.81	0.26				
4A — Solid Waste Disposal		0.81					
4B — Biological Treatment of Solid Waste		NO	NO				
C — Incineration and Open Burning of Waste	254.95	0.00	0.01				
4D — Wastewater Treatment and Discharge		NE	0.25				
4E — Other (please specify)	NO	NO	NO				
5 — OTHER	NO	NO	NO	NO	NO	NO	NO
5A — Indirect N2O emissions from the Atmospheric Deposition of Nitrogen n NOx and NH3			NO				
5B — Other (please specify)	NO	NO	NO	NO	NO	NO	NO
NFORMATION ITEMS							
CO ₂ from Biomass Combustion for Energy Production	1,707.00						

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 Notation keys: C = confidential information, NE = not estimated and NO = not ocurring.
 Due to confidentiality reasons,

 CO₂ emissions from 2C Metal Industry is included under 2H Other; and

 CO₂ emissions is included under CH₄ in the Electronics Industry (2E).

GREENHOUSE GAS BREAKDOWN OF HFCs, PFCs, SF₆ AND NF₃ FOR YEAR 2016

Graanbauca Gae Souraa					HFCs (kg)				
and Sink Categories	HFC- 23	HFC- 32	HFC- 41	HFC- 125	HFC- 134a	HFC- 143a	HFC- 152a	HFC- 227ea	HFC- 43-10mee
Total National Emissions and Removals	5,794.88	2,760.09	С	3,759.57	42,143.53	1,452.30	С	С	194,989.20
2 — INDUSTRIAL PROCESSES AND PRODUCT USE									
2A — Mineral Industry									
2A1 Cement Production									
2A2 Lime Production									
2A3 Glass Production									
2A4 Other Process Uses of Carbonates									
2A5 Other (please specify)									
2B — Chemical Industry									
2B1 Ammonia Production									
2B2 Nitric Acid Production									
2B3 Adipic Acid Production									
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production									
2B5 Carbide Production									
2B6 Titanium Dioxide Production									
2B7 Soda Ash Production									
2B8 Petrochemical and Carbon Black Production									
2B9 Fluorochemical Production									
2B10 Other (please specify)									
2C — Metal Industry									
2C1 Iron and Steel Production									
2C2 Ferroalloys Production									
2C3 Aluminium Production									
2C4 Magnesium Production									
2C5 Lead Production									
2C6 Zinc Production									
2C7 Other (please specify)									

Greenhouse Gas Source					HFCs (kg)				
and Sink Categories	HFC- 23	HFC- 32	HFC- 41	HFC- 125	HFC- 134a	HFC- 143a	HFC- 152a	HFC- 227ea	HFC- 43-10mee
Total National Emissions and Removals	5,794.88	2,760.09	С	3,759.57	42,143.53	1,452.30	С	С	194,989.20
2D — Non-Energy Products from Fuels and Solvent Use									
2D1 Lubricant Use									
2D2 Paraffin Wax Use									
2D3 Solvent Use									
2D4 Other (please specify)									
2E — Electronics Industry	5,794.88	453.10	С						
2E1 Integrated Circuit or Semiconductor	5,794.88	453.10	С						
2E2 TFT Flat Panel Display									
2E3 Photovoltaics									
2E4 Heat Transfer Fluid									
2E5 Other (please specify)									
2F — Product Uses as Substitutes for Ozone Depleting Substances		2,306.99		3,759.57	42,143.53	1,452.30	С	С	194,989.20
2F1 Refrigeration and Air Conditioning		2,306.99		3,759.57	42,143.53	1,452.30	С		
2F2 Foam Blowing Agents									
2F3 Fire Protection								С	
2F4 Aerosols									
2F5 Solvents									С
2F6 Other Applications									
2G — Other Product Manufacture and Use									
2G1 Electrical Equipment									
2G2 SF₀ and PFCs from Other Product Uses									
2G3 N ₂ O from Product Uses									
2G4 Other (please specify)									
2H — Other									
2H1 Pulp and Paper Industry									
2H2 Food and Beverages Industry									
2H3 Other (please specify)									
2H3 Other (please specify)									

Notation keys: C = confidential information.
 Due to confidentiality reasons,

 Emissions from 2E2 TFT Flat Panel Display are included under 2E1 Integrated Circuit or Semiconductor;
 Emissions from HFC-41 are included under HFC-32 of the Electronics Industry (2E); and
 Emissions from HFC-152a and HFC-227ea are included under HFC-43-10mee of the Product Uses as Substitutes for Ozone Depleting Substances (2F) category.

- Notation keys: C = confidential information.
 Due to confidentiality reasons,

 Emissions from 2E2 TFT Flat Panel Display are included under 2E1 Integrated Circuit or Semiconductor;
 Emissions from HFC-41 are included under HFC-32 of the Electronics Industry (2E); and
 Emissions from HFC-152a and HFC-227ea are included under HFC-43-10mee of the Product Uses as Substitutes for Ozone Depleting Substances (2F) category.

Greenhouse Gas Source	eenhouse Gas Source PFCs (kg)						
and Sink Categories	PFC-14	PFC-116	PFC-218	PFC-318	SF ₆ (kg)	NF ₃ (kg)	
Total National Emissions and Removals	108,022.00	41,386.24	4,190.64	2,362.61	3,997.29	13,696.40	
2 — INDUSTRIAL PROCESSES AND PRODUCT USE							
2A — Mineral Industry							
2A1 Cement Production							
2A2 Lime Production							
2A3 Glass Production							
2A4 Other Process Uses of Carbonates							
2A5 Other (please specify)							
2B — Chemical Industry							
2B1 Ammonia Production							
2B2 Nitric Acid Production							
2B3 Adipic Acid Production							
2B4 Caprolactam, Glyoxal and Glyoxylic Acid Production							
2B5 Carbide Production							
2B6 Titanium Dioxide Production							
2B7 Soda Ash Production							
2B8 Petrochemical and Carbon Black Production							
2B9 Fluorochemical Production							
2B10 Other (please specify)							
2C — Metal Industry							
2C1 Iron and Steel Production							
2C2 Ferroalloys Production							
2C3 Aluminium Production							
2C4 Magnesium Production							
2C5 Lead Production							
2C6 Zinc Production							
2C7 Other (please specify)							

1.	Notation	keys: C =	confidential	information.
\sim		C 1 1	111	

- Due to confidential implicit.
 Due to confidentiality reasons,

 Emissions from 2E2 TFT Flat Panel Display are included under 2E1 Integrated Circuit or Semiconductor;
 Emissions from HFC-41 are included under HFC-32 of the Electronics Industry (2E); and
 Emissions from HFC-152a and HFC-227ea are included under HFC-43-10mee of the Product Uses as Substitutes for Ozone Depleting Substances (2F) category.

Greenhouse Gas Source -	PFCs (kg)					
and Sink Categories	PFC-14	PFC-116	PFC-218	PFC-318	SF ₆ (kg)	NF ₃ (kg)
Total National Emissions and Removals	108,022.00	41,386.24	4,190.64	2,362.61	3,997.29	13,696.40
2D — Non-Energy Products from Fuels and Solvent Use						
2D1 Lubricant Use						
2D2 Paraffin Wax Use						
2D3 Solvent Use						
2D4 Other (please specify)						
2E — Electronics Industry	108,022.00	41,386.24	4,190.64	2,362.61	3,867.90	13,696.40
2E1 Integrated Circuit or Semiconductor	108,022.00	41,386.24	4,190.64	2,362.61	3,867.90	13,696.40
2E2 TFT Flat Panel Display	С				С	С
2E3 Photovoltaics						
2E4 Heat Transfer Fluid						
2E5 Other (please specify)						
2F — Product Uses as Substitutes for Ozone Depleting Substances						
2F1 Refrigeration and Air Conditioning						
2F2 Foam Blowing Agents						
2F3 Fire Protection						
2F4 Aerosols						
2F5 Solvents						
2F6 Other Applications						
2G — Other Product Manufacture and Use					129.39	
2G1 Electrical Equipment					129.39	
2G2 SF ₆ and PFCs from Other Product Uses						
2G3 N ₂ O from Product Uses						
2G4 Other (please specify)						
2H — Other						
2H1 Pulp and Paper Industry						
2H2 Food and Beverages Industry						
2H3 Other (please specify)						

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A1 — Energy Industries
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	Ene	ergy consumpt	CO ₂		
	Mass, Volume or Energy unit	А	B C		D	E
		Consumption	Conversion Factor	Consumption	CO ₂ Emission Factor	CO2 Emissions
			(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$
				C=A*B		E=C*D/106

LIQUID FUELS

LIQUID FULLS						
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil	kt	32.26	43.00	1,387.20	74,066.67	102.75
Residual Fuel Oil	kt	13.50	40.40	545.25	77,366.67	42.18
LPG						
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal	kt	420.67	25.80	10,853.20	94,600.00	1,026.71
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A1 — Energy Industries
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	CH ₄		N ₂ O		
		F	G	Н	I	
	Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
	or Energy unit	(kg CH ₄ /TJ)	$({\rm Gg}~{\rm CH}_4)$	(kg N ₂ 0/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
LIQUID FUELS						
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil	kt	3.00	0.00416	0.60	0.00083	
Residual Fuel Oil	kt	3.00	0.00164	0.60	0.00033	
LPG						
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal	kt	1.00	0.01085	1.50	0.01628	
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

	Units Energy consumption			CO	CO ₂		
		A B C		D	E		
	Mass, Volume		Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions	
	or Energy and	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$	
				C=A*B		E=C*D/106	
SOLID FUELS							
Brown Coal Briquettes							
Patent Fuel							
Coke Oven Coke / .ignite Coke							
Gas Coke							
coal Tar							
as Works Gas							
Coke Oven Gas							
Blast Furnace Gas							
Dxygen Steel Furnace Gas							
NATURAL GAS							
latural Gas (Dry)	ktoe	7,378.50	41.87	308,923.08	56,100.00	17,330.58	
OTHER FOSSIL FUELS							
Aunicipal Wastes Non-Biomass Fraction)							
ndustrial Wastes							
Vaste Oils							
PEAT							
Peat							
BIOMASS					INFORMATI	ON ITEMS	
Vood / Wood Waste							
Sulphite Lyes							
Other Primary Solid Biomass							
Charcoal							
Biogasoline							
Biodiesels							
Other Liquid Biofuels							
andfill Gas							
Sludge Gas							
Other Biogas							
Aunicipal Wastes Biomass Fraction)							
					TOTAL	18,502.23	

	Units	CH4	L	N ₂ (C
		F	G	Н	I
	Mass, Volume	CH4 Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions
	or Energy unit	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)
			G=C*F/106		I=C*H/106
SOLID FUELS					
Brown Coal Briquettes					
Patent Fuel					
Coke Oven Coke / Lignite Coke					
Gas Coke					
Coal Tar					
Gas Works Gas					
Coke Oven Gas					
Blast Furnace Gas					
Oxygen Steel Furnace Gas					
NATURAL GAS					
Natural Gas (Dry)	ktoe	1.00	0.30892	0.10	0.03089
OTHER FOSSIL FUELS					
Municipal Wastes (Non-Biomass Fraction)					
Industrial Wastes					
Waste Oils					
PEAT					
Peat					
BIOMASS					
Wood / Wood Waste					
Sulphite Lyes					
Other Primary Solid Biomass					
Charcoal					
Biogasoline					
Biodiesels					
Other Liquid Biofuels					
Landfill Gas					
Sludge Gas					
Other Biogas					
Municipal Wastes (Biomass Fraction)					
		TOTAL	0.32557	TOTAL	0.04833

SECTOR	Energy	Energy							
CATEGO	ORY Fuel Combustion Activities								
CATEGORY CODE 1A1 - Energy Industries									
SHEET	SHEET CO ₂ , CH ₄ and N ₂ O emissions from Solid Waste Incineration								
	А	В	С	D	Е	F	G		
							G=AxBxCxDxExF		
CO ₂	Total Amount of Fossil-Ba Waste Incinerated (Wet Weight)	sed Dry Matter Content	Fraction of Carbon in Dry Matter	Fraction of Fossil Carbon in Total Carbon	Oxidation Factor	Conversion Factor	Fossil CO ₂ Emissions		
	kt	fraction	fraction	fraction	fraction	44/12	Gg		
	1,854.00	С	С	С	1	3.67	1,542.320		
	Α	В		С	D		E		
			C=	AxBx10 ⁻⁹			E=CxD		
CH₄	Total Amount of Waste Incinerated (Wet Weight)	CH₄ Emission Factor	En	CH₄ nissions	Global Warm Potential of	ning CH₄	Emissions in CO ₂ eq		
	tonnes	kg CH ₄ /kt waste		Gg			Gg		
	2,835,413.26	0.2		0.001	28		0.016		
	A	В		С	D		Е		
			C=	AxBx10 ⁻⁹			E=CxD		
N ₂ O	Total Amount of Waste Incinerated (Wet Weight)	N ₂ O Emission Factor	En	N ₂ O nissions	Global Warm Potential of	ning N ₂ O	Emissions in CO ₂ eq		
	tonnes	kg N ₂ O/kt waste		Gg			Gg		
	2,835,413.26	47		0.133	265		35.315		

Default conversion and emission factors from the 2006 IPCC Guidelines are used for estimating emissions from solid waste incineration.
 According to the 2006 IPCC Guidelines, emissions from incineration with energy recovery are reported in the Energy sector. As such, the CO₂, CH₄ and N₂O emissions from solid waste incineration are included under 1A1 Energy Industries.
 Notation keys: C = confidential information.

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A1 — Energy Industries
SHEET	CH_4 and N_2O emissions from Sludge Incineration

Emissions from Sludge Incineration

GHG	Emissions in Gg	Global Warming Potential	Emissions in Gg CO_2 eq
CH_4	0.0033	28	0.092
N ₂ O	0.0597	265	15.817

Emissions from the incineration of sludge are computed based on CDM methodologies.
 The emissions were from the sludge incineration plant operated by ECO-SWM which was registered as a CDM project on 13 September 2010. From 2012 onwards, emissions from the incineration of sewage sludge were estimated based on the forward trend extrapolation of available data from 2010 and 2011.
 According to the 2006 IPCC Guidelines, emissions from incineration with energy recovery are reported in the Energy sector As such, the CH₄ and N₂O emissions from sludge incineration are included under 1A1 Energy Industries.

AN Z EX

SECTOR	Energy					
CATEGORY	Fuel Combust	ion Activities				
CATEGORY CODE	1A2 — Manufa	1A2 – Manufacturing Industries and Construction				
SHEET	CO_2 , CH_4 and N	N ₂ O from fuel c	ombustion by	source catego	ries – Tier 1	
	Units	Ene	ergy consump	tion	CO	2
		Α	В	С	D	E
	Mass, Volume		Conversion Factor	Consumption	CO ₂ Emission Factor	CO2 Emissions
	or Energy unit	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$
				C=A*B		E=C*D/106
LIQUID FUELS						
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil	kt	503.04	43.00	21,630.75	74,066.67	1,602.12
Residual Fuel Oil	kt	716.58	40.40	28,949.87	77,366.67	2,239.75
LPG	kt	С	С	С	С	С
Ethane						
Naphtha						
Lubricants						
Petroleum Coke	kt	С	С	С	С	645.54
Refinery Feedstocks						
Refinery Gas	kt	3,226.47	49.50	159,710.14	57,566.67	9,193.98
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

1. According to the 2006 IPCC Guidelines, emissions from autoproduction are allocated to the Manufacturing Industries and Construction (1A2) sector.

2. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a

4. Notation keys: C = confidential information.

SECTOR	Energy						
CATEGORY	Fuel Combustion Activities						
CATEGORY CODE	1A2 — Manufac	1A2 — Manufacturing Industries and Construction					
SHEET	CO_2 , CH_4 and N_2	O from fuel combu	stion by source o	categories – Tier 1			
	Units	CH	4	N₂C)		
		F	G	Н			
	Mass Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions		
	or Energy unit	(kg CH ₄ /TJ)	$(Gg CH_4)$	(kg N ₂ O/TJ)	(Gg N ₂ 0)		
			G=C*F/106		I=C*H/106		
LIQUID FUELS							
Crude Oil							
Orimulsion							
Natural Gas Liquids							
Motor Gasoline							
Aviation Gasoline							
Jet Gasoline							
Jet Kerosene							
Other Kerosene							
Shale Oil							
Gas / Diesel Oil	kt	3.00	0.06489	0.60	0.01298		
Residual Fuel Oil	kt	3.00	0.08685	0.60	0.01737		
LPG	kt	С	С	С	С		
Ethane							
Naphtha							
Lubricants							
Petroleum Coke	kt	С	0.01818	С	0.00448		
Refinery Feedstocks							
Refinery Gas	kt	1.00	0.15971	0.10	0.01597		
Paraffin Waxes							
Other Petroleum Products							
SOLID FUELS							
Anthracite							
Coking Coal							
Other Bituminous Coal							
Sub-Bituminous Coal							
Lignite							
Oil Shale and Tar Sands							

According to the 2006 IPCC Guidelines, emissions from autoproduction are allocated to the Manufacturing Industries and Construction (1A2) sector.
 IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.
 In the Manufacturing Industries and Construction (1A2) sector, – Transformation losses from the production of Gas Works Gas is included under the fuel type "Natural Gas". Gas Works Converse mainly produced from Natural Gas in Singapore

Gas was mainly produced from Natural Gas in Singapore
 – Emissions from the combustion of Synthesis Gas is included under the fuel type "Refinery Gas"
 – Emissions from the combustion of LPG and Gas Works Gas are included under the fuel type "Petroleum Coke".
 4. Notation keys: C = confidential information.

ANNEX

	Units	Energy consumption			CO ₂		
		А	B C		D	E	
	Mass, Volume or Energy unit		Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions	
	of Energy and	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	(Gg CO ₂)	
				C=A*B		E=C*D/106	
SOLID FUELS							
Brown Coal Briquettes							
Patent Fuel							
Coke Oven Coke / Lignite Coke							
Gas Coke							
Coal Tar							
Gas Works Gas	GWh	С	С	С	С	С	
Coke Oven Gas							
Blast Furnace Gas							
Oxygen Steel Furnace Gas							
NATURAL GAS							
Natural Gas (Dry)	ktoe	2,099.87	41.87	87,917.47	56,100.00	4,932.17	
OTHER FOSSIL FUELS							
Municipal Wastes (Non-Biomass Fraction)							
Industrial Wastes							
Waste Oils							
PEAT							
Peat							
BIOMASS					INFORMATI	ON ITEMS	
Wood / Wood Waste							
Sulphite Lyes							
Other Primary Solid Biomass							
Charcoal							
Biogasoline							
Biodiesels							
Other Liquid Biofuels							
Landfill Gas							
Sludge Gas							
Other Biogas							
Municipal Wastes (Biomass Fraction)							
					TOTAL	18,613.56	

1. According to the 2006 IPCC Guidelines, emissions from autoproduction are allocated to the Manufacturing Industries and

	Units	CH4		N ₂ O		
		F G		Н	I	
	Mass, Volume or Energy unit	CH₄ Emission Factor	CH ₄ Emissions	N₂O Emission Factor	N₂O Emissions	
		(kg CH ₄ /TJ)	$(Gg CH_4)$	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
SOLID FUELS						
Brown Coal Briquettes						
Patent Fuel						
Coke Oven Coke / Lignite Coke						
Gas Coke						
Coal Tar						
Gas Works Gas	GWh	С	С	С	С	
Coke Oven Gas						
Blast Furnace Gas						
Oxygen Steel Furnace Gas						
NATURAL GAS						
Natural Gas (Dry)	ktoe	1.00	0.08744	0.10	0.00874	
OTHER FOSSIL FUELS						
Municipal Wastes (Non-Biomass Fraction)						
Industrial Wastes						
Waste Oils						
PEAT						
Peat						
BIOMASS						
Wood / Wood Waste						
Sulphite Lyes						
Other Primary Solid Biomass						
Charcoal						
Biogasoline						
Biodiesels						
Other Liquid Biofuels						
Landfill Gas						
Sludge Gas						
Other Biogas						
Municipal Wastes (Biomass Frraction)						
		TOTAL	0.41708	TOTAL	0.05955	

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A3b — Road Transportation
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	Ene	Energy consumption			CO ₂		
		А	В	С	D	E		
	Mass, Volume		Conversion Factor	Consumption	CO₂ Emission Factor	CO2 Emissions		
	or Energy unit	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$		
				C=A*B		E=C*D/106		
LIQUID FUELS								
Crude Oil								
Orimulsion								
Natural Gas Liquids								
Motor Gasoline	kt	788.11	44.30	34,913.23	69,300.00	2,419.49		
Aviation Gasoline								
Jet Gasoline								
Jet Kerosene								
Other Kerosene								
Shale Oil								
Gas / Diesel Oil	kt	1,454.09	43.00	62,525.90	74,066.67	4,631.09		
Residual Fuel Oil								
LPG								
Ethane								
Naphtha								
Lubricants								
Petroleum Coke								
Refinery Feedstocks								
Refinery Gas								
Paraffin Waxes								
Other Petroleum Products								
SOLID FUELS								
Anthracite								
Coking Coal								
Other Bituminous Coal								
Sub-Bituminous Coal								
Lignite								
Oil Shale and Tar Sands								

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A3b – Road Transportation
SHEET	CO_2 , CH_4 and N_2O from fuel combi

FGHIParticipantPart		Units	CH ₄		N ₂ O		
Mass, Volum or Energy on or Ensision or Ensision or Ensision (ig GL, /L)CH, Ensision Emsision Factor Emsision Emsision Factor Emsision Emsision Factor (ig GN, 0/1)LIQUID FUELS(ig GV, /L)(ig GV, /L)(ig M, 0/L)Cude Gil </th <th></th> <th></th> <th>F</th> <th>G</th> <th>Н</th> <th>I</th>			F	G	Н	I	
or Energy uni (kg CH,/TJ) (Gg CH,J) (kg N,O/TJ) (Gg N,O) LIQUID FUELS G-C+F/10° I=C+H/10° Chude Gil S S S Orimulsion S S S S Natural Gas Liquids Kt S		Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N2O Emissions	
ICUID FUELS I=C+H/10° Crude Oil View Natural Gas Liquids View Mator Gasoline kt 25.00 0.87283 8.00 0.27931 Aviation Gasoline Kt 25.00 0.87283 8.00 0.27931 Aviation Gasoline View Vi		or Energy unit	(kg CH ₄ /TJ)	(Gg CH_4)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
LIQUID FUELS Crude Oil Orimulaion Natural Gas Liquids Mator Gasoline k1 26.00 0.87283 8.00 0.27931 Aviation Gasoline I				G=C*F/106		I=C*H/106	
Crude 0il	LIQUID FUELS	·					
OrimulaionNatural Gas LiquidsMotor Gasolinekt25.000.872838.000.27931Aviation Gasoline </td <td>Crude Oil</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Crude Oil						
Nataral Gas Ginginalkt25.000.872838.000.27931Aviation Gasoline<	Orimulsion						
Moto Gasolinekt25.000.872338.000.27931Akation Gasoline	Natural Gas Liquids						
Aviation Gasoline Jet Gasoline Jet Kerosene Other Kerosene Shale Oil Gas / Disel Oil kt 3.90 0.24385 3.90 0.24385 Reidual Fuel Oil V	Motor Gasoline	kt	25.00	0.87283	8.00	0.27931	
Jet Gasoline Jet Kerosene Other Kerosene Shale Oil Ga / Diesel Oil k1 3.90 0.24385 3.90 0.24385 Reidual Fuel Oil k1 3.90 0.24385 3.90 0.24385 Reidual Fuel Oil k1 s.90 0.24385 3.90 0.24385 Reidual Fuel Oil k1 s.90 0.24385 s.90 0.24385 Reidual Fuel Oil k1 s.90 0.24385 s.90 0.24385 Brane k1 s.90 0.24385 s.90 0.24385 Rubrach k1 s.80	Aviation Gasoline						
Jet Kerosene Other Kerosene Shale Oil Gas / Diesel Oil kt 390 0.24385 3.90 0.24385 Residual Fuel Oil LPG Ethane Naphtha Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FVELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Jet Gasoline						
Other Kerosene Shale Oil Gas / Diesel Oil kt 3.90 0.24385 Residual Fuel Oil LPG Ethane	Jet Kerosene						
Shale Oil kt 3.90 0.24385 3.90 0.24385 Residual Fuel Oil 0.24385 0.24385 0.24385 Residual Fuel Oil 0.24385 0.24385 0.24385 <td< td=""><td>Other Kerosene</td><td></td><td></td><td></td><td></td><td></td></td<>	Other Kerosene						
Gas / Diesel Oil kt 3.90 0.24385 3.90 0.24385 Residual Fuel Oil LPG -	Shale Oil						
Residual Fuel Oil LPG Ethane Naphtha Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Gas / Diesel Oil	kt	3.90	0.24385	3.90	0.24385	
LPG Ethane Naphtha Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Residual Fuel Oil						
Ethane Naphtha Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	LPG						
Naphtha Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Ethane						
Lubricants Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Naphtha						
Petroleum Coke Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Lubricants						
Refinery Feedstocks Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Petroleum Coke						
Refinery Gas Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Refinery Feedstocks						
Paraffin Waxes Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Refinery Gas						
Other Petroleum Products SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Paraffin Waxes						
SOLID FUELS Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Other Petroleum Products						
Anthracite Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	SOLID FUELS						
Coking Coal Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Anthracite						
Other Bituminous Coal Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Coking Coal						
Sub-Bituminous Coal Lignite Oil Shale and Tar Sands	Other Bituminous Coal						
Lignite Oil Shale and Tar Sands	Sub-Bituminous Coal						
Oil Shale and Tar Sands	Lignite						
	Oil Shale and Tar Sands						

	Units Energy consumption		CO ₂			
		А	В	С	D	E
	Mass, Volume		Conversion Factor	Consumption	CO2 Emission Factor	CO ₂ Emissions
	or Energy unit	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	(Gg CO ₂)
		-		C=A*B		E=C*D/10
OLID FUELS						
own Coal Briquettes						
atent Fuel						
oke Oven Coke / gnite Coke						
is Coke						
al Tar						
as Works Gas						
oke Oven Gas						
ast Furnace Gas						
kygen Steel Furnace Gas						
ATURAL GAS						
atural Gas (Dry)	ktoe	11.05	41.87	462.52	56,100.00	25.95
THER FOSSIL FUELS						
unicipal Wastes on-Biomass Fraction)						
dustrial Wastes						
aste Oils						
EAT						
at						
OMASS					INFORMATI	ON ITEMS
ood / Wood Waste						
Ilphite Lyes						
her Primary Did Biomass						
narcoal						
ogasoline						
odiesels						
her Liquid Biofuels						
ndfill Gas						
udge Gas						
her Biogas						
unicipal Wastes Jiomass Fraction)						
					TOTAL	7,076.52

SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas	Units	CH4		N ₂ O		
SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas		F	G	Н	I	
SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas	Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas	in Energy ante	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas			G=C*F/106		I=C*H/106	
Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas						
Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas						
Coke Oven Coke / Lignite Coke Gas Coke Coal Tar Gas Works Gas Coke Oven Gas						
Gas Coke Coal Tar Gas Works Gas Coke Oven Gas						
Coal Tar Gas Works Gas Coke Oven Gas						
Gas Works Gas						
Coke Oven Gas						
Blast Furnace Gas						
Oxygen Steel Furnace Gas						
NATURAL GAS						
Natural Gas (Dry)	ktoe	92.00	0.04255	3.00	0.00139	
OTHER FOSSIL FUELS						
Municipal Wastes (Non-Biomass Fraction)						
Industrial Wastes						
Waste Oils						
PEAT						
Peat						
BIOMASS						
Wood / Wood Waste						
Sulphite Lyes						
Other Primary Solid Biomass						
Charcoal						
Biogasoline						
Biodiesels						
Other Liquid Biofuels						
Landfill Gas						
Sludge Gas						
Other Biogas						
Municipal Wastes (Biomass Fraction)						

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A3dii — Domestic Water-borne Navigation
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	Energy consumption		CO2		
		А	В	С	D	Е
	Mass, Volume	Consumption	Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions
	or Energy unit Cons		(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$
				C=A*B		E=C*D/106
LIQUID FUELS						
Crude Oil						

Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil	kt	84.48	43.00	3,632.64	74,066.67	269.06
Residual Fuel Oil						
LPG						
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A3dii – Domestic Water-borne N
SHEET	CO_2 , CH_4 and N_2O from fuel combu

	Units	CH ₄		N ₂ O		
		F	G	Н	I	
	Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
	or Energy unit	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
LIQUID FUELS	1	1				
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil	kt	7.00	0.02543	2.00	0.00727	
Residual Fuel Oil						
LPG						
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

Navigation ustion by source categories – Tier 1

	Units	Energy consumption			CO ₂		
		А	В	С	D	E	
	Mass, Volume		Conversion Factor	Consumption	CO2 Emission Factor	CO2 Emissions	
	or Energy and	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	(Gg CO ₂)	
		-		C=A*B		E=C*D/106	
SOLID FUELS		<u> </u>					
Brown Coal Briquettes							
Patent Fuel							
Coke Oven Coke / Lignite Coke							
Gas Coke							
Coal Tar							
Gas Works Gas							
Coke Oven Gas							
Blast Furnace Gas							
Oxygen Steel Furnace Gas							
NATURAL GAS							
Natural Gas (Dry)							
OTHER FOSSIL FUELS							
Municipal Wastes (Non-Biomass Fraction)							
Industrial Wastes							
Waste Oils							
PEAT							
Peat							
BIOMASS					INFORMATI	ON ITEMS	
Wood / Wood Waste							
Sulphite Lyes							
Other Primary Solid Biomass							
Charcoal							
Biogasoline							
Biodiesels							
Other Liquid Biofuels							
Landfill Gas							
Sludge Gas							
Other Biogas							
Municipal Wastes (Biomass Fraction)							
					TOTAL	269.06	

	Units	CH ₄		N ₂ O		
		F	G	Н	I	
	Mass, Volume or Energy unit	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
	of Energy and	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
SOLID FUELS	· ·					
Brown Coal Briquettes						
Patent Fuel						
Coke Oven Coke / Lignite Coke						
Gas Coke						
Coal Tar						
Gas Works Gas						
Coke Oven Gas						
Blast Furnace Gas						
Oxygen Steel Furnace Gas						
NATURAL GAS						
Natural Gas (Dry)						
OTHER FOSSIL FUELS						
Municipal Wastes (Non-Biomass Fraction)						
Industrial Wastes						
Waste Oils						
PEAT						
Peat						
BIOMASS						
Wood / Wood Waste						
Sulphite Lyes						
Other Primary Solid Biomass						
Charcoal						
Biogasoline						
Biodiesels						
Other Liquid Biofuels						
Landfill Gas						
Sludge Gas						
Other Biogas						
Municipal Wastes (Biomass Fraction)						
		TOTAL	0.02543	TOTAL	0.00727	

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A4a — Commercial / Institutional
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	Energy consumption			CO ₂		
		А	В	С	D	E	
	Mass, Volume		Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions	
	or Energy unit	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$	
				C=A*B		E=C*D/106	
LIQUID FUELS							
Crude Oil							
Orimulsion							
Natural Gas Liquids							
Motor Gasoline							

Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil						
Residual Fuel Oil						
LPG	kt	70.16	47.30	3,318.73	63,066.67	209.30
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A4a — Commercial / Institutiona
SHEET	CO_2 , CH_4 and N_2O from fuel combi

	Units	CH ₄		N ₂ O		
		F	G	Н	I	
	Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
	or Energy unit	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
LIQUID FUELS	1	1				
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil						
Residual Fuel Oil						
LPG	kt	5.00	0.01659	0.10	0.00033	
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

I
stion by source categories – Tier 1

ANNEX

	Units	Energy consumption			CO ₂		
		А	В	С	D	E	
	Mass, Volume or Energy unit		Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions	
		Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$	
				C=A*B		E=C*D/106	
OLID FUELS		· '					
rown Coal Briquettes							
Patent Fuel							
oke Oven Coke / ignite Coke							
as Coke							
oal Tar							
as Works Gas	GWh	925.32	3.60	3,331.14	55,733.33	185.66	
oke Oven Gas							
last Furnace Gas							
xygen Steel Furnace Gas							
IATURAL GAS							
latural Gas (Dry)	ktoe	21.43	41.87	897.15	56,100.00	50.33	
THER FOSSIL FUELS							
Iunicipal Wastes Non-Biomass Fraction)							
ndustrial Wastes							
/aste Oils							
EAT							
eat							
IOMASS					INFORMATI	ON ITEMS	
/ood / Wood Waste							
ulphite Lyes							
Other Primary Solid Biomass							
charcoal							
iogasoline							
iodiesels							
ther Liquid Biofuels							
andfill Gas							
ludge Gas							
ther Biogas							
Aunicipal Wastes Biomass Fraction)							
					TOTAL	445.29	

Units CH F CH₄ Mass, Volume **Emission Factor** or Energy unit (kg CH₄/TJ) SOLID FUELS Brown Coal Briquettes Patent Fuel Coke Oven Coke / Lignite Coke Gas Coke Coal Tar 5.00 GWh Gas Works Gas Coke Oven Gas Blast Furnace Gas Oxygen Steel Furnace Gas NATURAL GAS 5.00 ktoe Natural Gas (Dry) OTHER FOSSIL FUELS Municipal Wastes (Non-Biomass Fraction) Industrial Wastes Waste Oils PEAT Peat BIOMASS Wood / Wood Waste Sulphite Lyes Other Primary Solid Biomass Charcoal Biogasoline Biodiesels Other Liquid Biofuels Landfill Gas Sludge Gas Other Biogas **Municipal Wastes** (Biomass Fraction) TOTAL

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

G	Н	1
CH₄ Emissions	N₂O Emission Factor	N₂O Emissions
(Gg CH ₄)	(kg N ₂ 0/TJ)	(Gg N ₂ 0)
G=C*F/10 ⁶		I=C*H/106
0.01666	0.10	0.00033
0.00449	0.10	0.00009
0.03774	ΤΟΤΔΙ	0 00075

2

SECTOR	Energy
CATEGORY	Fuel Combustion Activities
CATEGORY CODE	1A4b - Residential
SHEET	CO_2 , CH_4 and N_2O from fuel combustion by source categories – Tier 1

	Units	Ene	ergy consump	tion	CO ₂		
		А	В	С	D	E	
	Mass, Volume		Conversion Factor	Consumption	CO₂ Emission Factor	CO ₂ Emissions	
	or Energy unit	Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$	
				C=A*B		E=C*D/106	
LIQUID FUELS							
Crude Oil							
Orimulsion							
Natural Gas Liquids							
Motor Gasoline							
Aviation Gasoline							
Jet Gasoline							
Jet Kerosene							
Other Kerosene							
Shale Oil							
Gas / Diesel Oil							
Residual Fuel Oil							
LPG	kt	23.39	47.30	1,106.24	63,066.67	69.77	
Ethane							
Naphtha							
Lubricants							
Petroleum Coke							
Refinery Feedstocks							
Refinery Gas							
Paraffin Waxes							
Other Petroleum Products							
SOLID FUELS							
Anthracite							
Coking Coal							
Other Bituminous Coal							
Sub-Bituminous Coal							
Lignite							
Oil Shale and Tar Sands							

	Units	CH ₄		N ₂ O		
		F	G	Н	I	
	Mass, Volume	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions	
	or Energy unit	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)	
			G=C*F/106		I=C*H/106	
LIQUID FUELS						
Crude Oil						
Orimulsion						
Natural Gas Liquids						
Motor Gasoline						
Aviation Gasoline						
Jet Gasoline						
Jet Kerosene						
Other Kerosene						
Shale Oil						
Gas / Diesel Oil						
Residual Fuel Oil						
LPG	kt	5.00	0.00553	0.10	0.00011	
Ethane						
Naphtha						
Lubricants						
Petroleum Coke						
Refinery Feedstocks						
Refinery Gas						
Paraffin Waxes						
Other Petroleum Products						
SOLID FUELS						
Anthracite						
Coking Coal						
Other Bituminous Coal						
Sub-Bituminous Coal						
Lignite						
Oil Shale and Tar Sands						

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

ANNEX

	Units	Energy consumption		CO ₂		
		А	В	С	D	E
	Mass, Volume or Energy unit		Conversion Factor	Consumption	CO ₂ Emission Factor	CO ₂ Emissions
		Consumption	(TJ/unit)	(TJ)	(kg CO ₂ /TJ)	$(Gg CO_2)$
		-		C=A*B		E=C*D/106
SOLID FUELS		L I				
Brown Coal Briquettes						
Patent Fuel						
Coke Oven Coke / Lignite Coke						
Gas Coke						
Coal Tar						
Gas Works Gas	GWh	707.73	3.60	2,547.81	55,733.33	142.00
Coke Oven Gas						
Blast Furnace Gas						
Oxygen Steel Furnace Gas						
NATURAL GAS						
Natural Gas (Dry)						
OTHER FOSSIL FUELS						
Municipal Wastes (Non-Biomass Fraction)						
Industrial Wastes						
Waste Oils						
PEAT						
Peat						
BIOMASS					INFORMATI	ON ITEMS
Wood / Wood Waste						
Sulphite Lyes						
Other Primary Solid Biomass						
Charcoal						
Biogasoline						
Biodiesels						
Other Liquid Biofuels						
Landfill Gas						
Sludge Gas						
Other Biogas						
Municipal Wastes (Biomass Fraction)						
					TOTAL	211.77

	Units	CH	4	N ₂	C
		F	G	Н	I
	Mass, Volume or Energy unit	CH₄ Emission Factor	CH₄ Emissions	N₂O Emission Factor	N₂O Emissions
	or Energy and	(kg CH ₄ /TJ)	(Gg CH ₄)	(kg N ₂ O/TJ)	(Gg N ₂ 0)
			G=C*F/106		I=C*H/106
SOLID FUELS	·				
Brown Coal Briquettes					
Patent Fuel					
Coke Oven Coke / Lignite Coke					
Gas Coke					
Coal Tar					
Gas Works Gas	GWh	5.00	0.01274	0.10	0.00025
Coke Oven Gas					
Blast Furnace Gas					
Oxygen Steel Furnace Gas					
NATURAL GAS					
Natural Gas (Dry)					
OTHER FOSSIL FUELS					
Municipal Wastes (Non-Biomass Fraction)					
Industrial Wastes					
Waste Oils					
PEAT					
Peat					
BIOMASS					
Wood / Wood Waste					
Sulphite Lyes					
Other Primary Solid Biomass					
Charcoal					
Biogasoline					
Biodiesels					
Other Liquid Biofuels					
Landfill Gas					
Sludge Gas					
Other Biogas					
Municipal Wastes (Biomass Fraction)					
		TOTAL	0.01827	TOTAL	0.00037

1. IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

IPCC default conversion factors and emission factors are used for emissions computation, except Gas Works Gas where a country-specific CO₂ emission factor of 15.2tC/TJ is used.

ANNEX

SECTOR	Energy
CATEGORY	Fugitive Emissions from Fuels
CATEGORY CODE	1B2 – Oil and Natural Gas

Fugitive Emissions from Oil and Natural Gas

GHG	Emissions in Gg	Global Warming Potential	Emissions in Gg CO2 eq
CO ₂	1,085.750	1	1,085.750
CH_4	0.783	28	21.912
N ₂ 0	0.007	265	1.832

Fugitive emissions from oil and natural gas are compiled based on company-level data.
 Plant-specific methodologies and factors are used where available, otherwise IPCC default methodologies and factors are used.

SECTOR	Industrial Processes and Produc
CATEGORY	Electronics Industry
CATEGORY CODE	2E

		А	В	С	D	E
				C =AxB		E = CxDx10 ⁻⁶
Greenhouse Gas (GHG)	Chemical Formula	Mass of F-Gases Used in Process	Fraction of F-Gas Used in Process with Emission Control Technology	Total emissions for each GHG	Global Warming Potential	Emissions in CO ₂ equivalent
		kg		kg		$\mathrm{Gg}\mathrm{CO}_{_2}\mathrm{eq}$
Carbon Dioxide	CO ₂	С	С	С	1	С
Methane	CH_4	С	С	5,181.06	28	0.15
Nitrous Oxide	N ₂ 0	С	С	86,855.77	265	23.02
HFC-23	CHF3	С	С	5,794.88	12,400	71.86
HFC-32	CH_2F_2	С	С	453.10	677	0.31
HFC-41	CH ₃ F ₂	С	С	С	116	С
PFC-14	CF_4	С	С	108,022.00	6,630	716.19
PFC-116	C_2F_6	С	С	41,386.24	11,100	459.39
PFC-218	$C_{3}F_{8}$	С	С	4,190.64	8,900	37.30
PFC-c318	c-C ₄ F ₈	С	С	2,362.61	9,540	22.54
Sulphur hexafluoride	${\rm SF_6}$	С	С	3,867.90	23,500	90.90
Nitrogen trifluoride	NF ₃	С	C	13,696.40	16,100	220.51

The total figure includes direct and by-product emissions for each GHG.
 Notation keys: C = confidential information.
 Due to confidentiality reasons,

 CO₂ emissions are included under CH₄
 Emissions from HFC-41 are included under HFC-32.

Opposite page: An oil refinery at night, as seen from West Coast Park

Agriculture, Forestry and Other Land Use SECTOR -CATEGORY CATEGORY CODE 3

SHEET 1 of 2 AFOLU Sectoral Table

	Net CO2 emissions/ removals		Emissions			
Categories	CO ₂	CH_4	N ₂ 0	NO _x	CO	NMVOC
			(Gg)			
3 — afolu	11.95	NE	0.02			
3A — Livestock		NE	NE			
3A1 Enteric Fermentation		NE				
3A1a Cattle		NE				
3A1ai Dairy Cows		NE				
3A1aii Other Cattle		NO				
3A1b Buffalo		NO				
3A1c Sheep		NO				
3A1d Goats		NE				
3A1e Camels		NO				
3A1f Horses		NO				
3A1g Mules and Asses		NO				
3A1h Swine		NO				
3A1j Other (please specify)		NO				
3A2 Manure Management		NE	NE			
3A2a Cattle		NE	NE			
3A2ai Dairy Cows		NE	NE			
3A2aii Other Cattle		NO	NO			
3A2b Buffalo		NO	NO			
3A2c Sheep		NO	NO			
3A2d Goats		NE	NE			
3A2e Camels		NO	NO			
3A2f Horses		NO	NO			
3A2g Mules and Asses		NO	NO			
3A2h Swine		NO	NO			
3A2i Poultry		NE	NE			
3A2j Other (please specify)		NO	NO			

SECTOR	Agriculture, Forestry and Other La
CATEGORY	-
CATEGORY CODE	3
SHEET	1 of 2 AFOLU Sectoral Table

	Net CO2 emissions/ removals			Emissions		
Categories	CO ₂	CH_4	N ₂ O	NO _x	CO	NMVOC
			(Gg)			
3B — Land	10.58		0.02			
3B1 Forest Land	-55.91		0.00			
3B1a Forest Land Remaining Forest Land	-25.85		0.00			
3B1b Land Converted to Forest Land	-30.06		0.00			
3B1bi Cropland Converted to Forest Land	-0.03		0.00			
3B1bii Grassland Converted to Forest Land	NO		NO			
3B1biii Wetlands Converted to Forest Land	-2.04		NO			
3B1biv Settlements Converted to Forest Land	-19.54		0.00			
3B1bv Other Land Converted to Forest Land	NO		NO			
3B1bvi Other (Sea) converted to Forest Land	-8.45		0.00			
3B2 Cropland	1.80		0.00			
3B2a Cropland Remaining Cropland	2.03		0.00			
3B2b Land Converted to Cropland	-0.23		0.00			
3B2bi Forest Land Converted to Cropland	0.16		0.00			
3B2bii Grassland Converted to Cropland	NO		NO			
3B2biii Wetlands Converted to Cropland	0.00		NO			
3B2biv Settlements Converted to Cropland	-0.40		0.00			
3B2bv Other Land Converted to Cropland	NO		NO			
3B2bvi Other (Sea) converted to Cropland	0.00		0.00			
3B3 Grassland	NO		NO			
3B3a Grassland Remaining Grassland	NO		NO			
3B3b Land Converted to Grassland	NO		NO			
3B3bi Forest Land Converted to Grassland	NO		NO			
3B3bii Cropland Converted to Grassland	NO		NO			
3B3biii Wetlands Converted to Grassland	NO		NO			
3B3biv Settlements Converted to Grassland	NO		NO			
3B3bv Other Land Converted to Grassland	NO		NO			
3B3bvi Other (Sea) converted to Grassland	NO		NO			

*Cells to report emissions of NO_x, CO and NMVOC have not been shaded although the physical potential for emissions is lacking for some categories.

and	Use

SECTOR

CATEGORY

CATEGORY CODE 3

-

ANNEX

2 of 2 AFOLU Sectoral Table SHEET BIENNIAL Net CO_2 emissions/ Emissions

Agriculture, Forestry and Other Land Use

Octowariaa	removals					
Categories	CO ₂	CH_4	N ₂ 0	NO _x	CO	NMVOC
			(Gg)			
3B4 Wetlands	1.58		NO			
3B4a Wetlands Remaining Wetlands	NO		NO			
3B4ai Peatlands Remaining Peatlands	NO		NO			
3B4aii Flooded Land Remaining Flooded Land	NO		NO			
3B4aiii Other Wetlands Remaining Other Wetlands	NO		NO			
3B4b Land Converted to Wetlands	1.58		NO			
3B4bi Land Converted for Peat Extraction	NO		NO			
3B4bii Land Converted to Flooded Land	1.58		NO			
3B4biii Land Converted to Other Wetlands	NO		NO			
3B5 Settlements	63.12		0.02			
3B5a Settlements Remaining Settlements	-1.45		0.01			
3B5b Land Converted to Settlements	64.57		0.01			
3B5bi Forest Land Converted to Settlements	89.92		0.01			
3B5bii Cropland Converted to Settlements	2.26		0.00			
3B5biii Grassland Converted to Settlements	NO		NO			
3B5biv Wetlands Converted to Settlements	-1.94		NO			
3B5bv Other Land Converted to Settlements	NO		0.00			
3B5bvi Other (Sea) converted to Settlements	-25.68		NO			

SECTOR Agriculture, Forestry and Other La -CATEGORY CATEGORY CODE 3 SHEET 2 of 2 AFOLU Sectoral Table

	Net CO ₂ emissions/ removals			Emissions			
Categories	CO2	CH_4	N ₂ 0	NO _x	CO	NMVOC	
			(Gg)				
3B6 Other Land	NO		NO				
3B6a Other Land Remaining Other Land	NO		NO				
3B6b Land Converted to Other Land	NO		NO				
3B6bi Forest Land Converted to Other Land	NO		NO				
3B6bii Cropland Converted to Other Land	NO		NO				
3B6biii Grassland Converted to Other Land	NO		NO				
3B6biv Wetlands Converted to Other Land	NO		NO				
3B6bv Settlements Converted to Other Land	NO		NO				
3B6bvi Other (Sea) converted to Other Land	NO		NO				
3C — Aggregate Sources and Non-CO ₂ Emissions Sources on Land	NE	NO	NE				
3C1 Burning	NO	NO	NO				
3C1a Burning in Forest Land	NO	NO	NO				
3C1b Burning in Cropland	NO	NO	NO				
3C1c Burnings in Grassland	NO	NO	NO				
3C1d Burnings in All Other Land	NO	NO	NO				
3C2 Liming	NE						
3C3 Urea Fertilisation	NE						
3C4 Direct N2O Emissions from Managed Soils			NE				
3C5 Indirect N2O Emissions from Managed Soils			NE				
3C6 Indirect №0 Emissions from Manure Management			NE				
3C7 Rice Cultivations		NO					
3C8 Other (please specify)	NO	NO	NO				
3D — Other	1.36	NO	NO				
3D1 Harvested Wood Products	NO						
3D2 Other (Sea)	1.36	NO	NO				

*Cells to report emissions of NO_x, CO and NMVOC have not been shaded although the physical potential for emissions is lacking for some categories.

nd Use	

SECTOR Agriculture, Forestry and Other Land Use

Land

CATEGORY CODE 3B

SHEET

CATEGORY

1 of 2 AFOLU Background Table: Carbon Stock Changes in FOLU

	Activity Data Net carbon stock change and CO2 emissions/remov						
			Biomass				
Categories	Total Area	Thereof: Area of organic soils	Increase	Decrease	Carbon emitted as CH₄ and CO from fires	Net carbon stock change	
	(h	a)		(G	g C)		
3B — Land	71,970.0	859.8	29.5	27.3	NO	2.2	
3B1 Forest Land	16,354.2	823.9	13.0	2.1	NO	11.0	
3B1a Forest Land Remaining Forest Land	13,026.9	778.4	8.5	2.1	NO	6.5	
3B1b Land Converted to Forest Land	3,327.4	45.5	4.5	0.0	NO	4.5	
3B1bi Cropland Converted to Forest Land	116.0	0.0	0.0	0.0	NO	0.0	
3B1bii Grassland Converted to Forest Land	NO	NO	NO	NO	NO	NO	
3B1biii Wetlands Converted to Forest Land	147.2	0.0	0.0	0.0	NO	0.0	
3B1biv Settlements Converted to Forest Land	2,526.0	1.5	4.1	0.0	NO	4.1	
3B1bv Other Land Converted to Forest Land	NO	NO	NO	NO	NO	NO	
3B1bvi Other (Sea) converted to Forest Land	538.1	43.9	0.3	0.0	NO	0.3	
3B2 Cropland	269.9	0.0	1.7	2.3	NO	-0.5	
3B2a Cropland Remaining Cropland	147.0	0.0	0.9	1.4	NO	-0.5	
3B2b Land Converted to Cropland	122.8	0.0	0.8	0.9	NO	0.0	
3B2bi Forest Land Converted to Cropland	10.4	0.0	0.1	0.1	NO	0.0	
3B2bii Grassland Converted to Cropland	NO	NO	NO	NO	NO	NO	
3B2biii Wetlands Converted to Cropland	0.3	0.0	0.0	0.0	NO	0.0	
3B2biv Settlements Converted to Cropland	112.1	0.0	0.8	0.8	NO	0.0	
3B2bv Other Land Converted to Cropland	NO	NO	NO	NO	NO	NO	
3B2bvi Other (Sea) converted to Cropland	0.0	0.0	0.0	0.0	NO	0.0	
3B3 Grassland	NO	NO	NO	NO	NO	NO	
3B3a Grassland Remaining Grassland	NO	NO	NO	NO	NO	NO	
3B3b Land Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3bi Forest Land Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3bii Cropland Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3biii Wetlands Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3biv Settlements Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3bv Other Land Converted to Grassland	NO	NO	NO	NO	NO	NO	
3B3bvi Other (Sea) converted to Grassland	NO	NO	NO	NO	NO	NO	

SECTOR	Agriculture, Forestry and Other La
CATEGORY	Land
CATEGORY CODE	3B
SHEET	1 of 2 AFOLU Background Table: (

	Net carbon s				
	Dead or				
Categories	Net carbon stock change	Car emitt CH₄ CO fir			
3B — Land	-1.3	Ν			
3B1 Forest Land	1.0	Ν			
3B1a Forest Land Remaining Forest Land	0.5	Ν			
3B1b Land Converted to Forest Land	0.5	N			
3B1bi Cropland Converted to Forest Land	0.0	N			
3B1bii Grassland Converted to Forest Land	NO	Ν			
3B1biii Wetlands Converted to Forest Land	0.0	٨			
3B1biv Settlements Converted to Forest Land	0.3	Ν			
3B1bv Other Land Converted to Forest Land	NO	Ν			
3B1bvi Other (Sea) converted to Forest Land	0.2	Ν			
3B2 Cropland	-0.1	Ν			
3B2a Cropland Remaining Cropland	0.0	١			
3B2b Land Converted to Cropland	-0.1	Ν			
3B2bi Forest Land Converted to Cropland	0.0	١			
3B2bii Grassland Converted to Cropland	NO	١			
3B2biii Wetlands Converted to Cropland	0.0	١			
3B2biv Settlements Converted to Cropland	0.0	١			
3B2bv Other Land Converted to Cropland	NO	١			
3B2bvi Other (Sea) converted to Cropland	0.0	١			
3B3 Grassland	NO	١			
3B3a Grassland Remaining Grassland	NO	Ν			
3B3b Land Converted to Grassland	NO	Ν			
3B3bi Forest Land Converted to Grassland	NO	Ν			
3B3bii Cropland Converted to Grassland	NO	Ν			
3B3biii Wetlands Converted to Grassland	NO	Ν			
3B3biv Settlements Converted to Grassland	NO	Ν			
3B3bv Other Land Converted to Grassland	NO	Ν			
3B3bvi Other (Sea) converted to Grassland	NO	Ν			

Carbon Stock Changes in FOLU

anic matter Soils Net CO₂ rbon Net carbon Net carbon Net carbon emissions tted as stock stock stock and change change in change in from mineral organic soils soils ires (Gg C) (Gg CO₂) -4.2 NO -1.3 0.4 10.6 NO 1.0 2.7 0.6 -55.9 NO 0.5 -0.5 0.5 -25.9 NO 0.5 3.1 0.1 -30.1 NO 0.0 0.0 0.0 0.0 NO NO NO NO NO NO 0.0 0.5 0.0 -2.0 NO 0.3 1.0 0.0 -19.5 NO NO NO NO NO NO 0.2 1.7 0.1 -8.4 NO -0.1 0.1 0.0 1.8 NO 0.0 0.0 0.0 2.0 NO -0.1 0.2 0.0 -0.2 NO 0.0 0.0 0.0 0.2 NO NO NO NO NO NO 0.0 0.0 0.0 0.0 NO 0.2 0.0 0.0 -0.4 NO NO NO NO NO NO 0.0 0.0 0.0 0.0 NO NO

stock change and CO2 emissions/removals

1 2 3

SECTOR	Agriculture, Forestry and Other Land Use
CATEGORY	Land
CATEGORY CODE	3B

SHEET

Activity Data Net carbon stock change and CO2 emissions/removals

	Biomass						
Categories	Total Area	Thereof: Area of organic soils	Increase	Decrease	Carbon emitted as CH₄ and CO from fires	Net carbon stock change	
	(h	a)		(G	g C)		
3B4 Wetlands	3,911.0	14.6	0.0	0.2	NO	-0.2	
3B5 Settlements	51,434.9	21.4	14.7	22.8	NO	-8.1	
3B5a Settlements Remaining Settlements	40,690.3	0.0	11.3	8.9	NO	2.4	
3B5b Land Converted to Settlements	10,744.6	21.4	3.4	13.9	NO	-10.4	
3B5bi Forest Land Converted to Settlements	3,684.1	21.4	1.1	13.7	NO	-12.6	
3B5bii Cropland Converted to Settlements	330.6	0.0	0.1	0.2	NO	0.0	
3B5biii Grassland Converted to Settlements	NO	NO	NO	NO	NO	NO	
3B5biv Wetlands Converted to Settlements	311.1	0.0	0.1	0.0	NO	0.1	
3B5bv Other Land Converted to Settlements	NO	NO	NO	NO	NO	NO	
3B5bvi Other (Sea) converted to Settlements	6,418.8	0.0	2.0	0.0	NO	2.0	
3B6 Other Land	NO	NO	NO	NO	NO	NO	
3B6a Other Land Remaining Other Land	NO	NO	NO	NO	NO	NO	
3B6b Land Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bi Forest Land Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bii Cropland Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6biii Grassland Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6biv Wetlands Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bv Settlements Converted to Other Land	NO	NO	NO	NO	NO	NO	

2 of 2 AFOLU Background Table: Carbon Stock Changes in FOLU

SECTOR	Agriculture, Forestry and Other Lar
CATEGORY	Land
CATEGORY CODE	3B
SHEET	2 of 2 AFOLU Background Table: C

	Net carbon stock change and CO_2 emissions/removals						
	De	ad organic ma	tter	Sc	oils		
Categories	Net carbon stock change	Carbon emitted as CH₄ and CO from fires	Net carbon stock change	Net carbon stock change in mineral soils	Net carbon stock change in organic soils	Net CO ₂ emissions	
			(Gg C)			(Gg CO ₂)	
3B4 Wetlands	0.0	NO	0.0	-0.2	0.0	1.6	
3B5 Settlements	-2.1	NO	-2.1	-6.8	-0.2	63.1	
3B5a Settlements Remaining Settlements	0.2	NO	0.2	-2.2	0.0	-1.4	
3B5b Land Converted to Settlements	-2.3	NO	-2.3	-4.6	-0.2	64.6	
3B5bi Forest Land Converted to Settlements	-2.3	NO	-2.3	-9.4	-0.2	89.9	
3B5bii Cropland Converted to Settlements	0.0	NO	0.0	-0.6	0.0	2.3	
3B5biii Grassland Converted to Settlements	NO	NO	NO	NO	NO	NO	
3B5biv Wetlands Converted to Settlements	0.0	NO	0.0	0.4	0.0	-1.9	
3B5bv Other Land Converted to Settlements	NO	NO	NO	NO	NO	NO	
3B5bvi Other (Sea) converted to Settlements	0.0	NO	0.0	4.9	0.0	-25.7	
3B6 Other Land	NO	NO	NO	NO	NO	NO	
3B6a Other Land Remaining Other Land	NO	NO	NO	NO	NO	NO	
3B6b Land Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bi Forest Land Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bii Cropland Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6biii Grassland Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6biv Wetlands Converted to Other Land	NO	NO	NO	NO	NO	NO	
3B6bv Settlements Converted to Other Land	NO	NO	NO	NO	NO	NO	

Carbon Stock Changes in FOLU

SECTOR	Waste
CATEGORY	Solid Waste Disposal
CATEGORY CODE	4A
SHEET	CH4 emissions from Solid Waste Disposal

Uncertainty factor	Fraction of methane captured at the SWDS and flared, combusted or used in another manner	Oxidation factor	Fraction of methane in the SWDS gas (volume fraction)	Fraction of degradable organic carbon (DOC) that can decompose
f	f	ОХ	F	DOC _f
0.9	0	0.1	0.5	0.5

Methane Correction Factor	Total amount of organic waste prevented from disposal in year x (tons)	Degradable Organic Carbon (by weight) - dry sludge	Degradable Organic Carbon (by weight) - dewatered sludge
MCF	Wx (tons/yr)	DOC (%)	DOC (%)
1	As per records	0.294	0.074

Decay constant	CH₄ Emissions	Global Warming Potential of CH₄	Emissions in CO_2 eq
k	Gg		Gg
0.4	0.814	28	22.793

SECTOR	Waste
CATEGORY	Incineration and Open Burning of
CATEGORY CODE	4C1 – Clinical Waste Incineration
SHEET	CO_2,CH_4 and N_2O emissions from

	А	В	С	D	Е	F	G
							F=AxBxCxDxE
C0 ₂	Total Amount of Clinical Waste Incinerated (Wet Weight)	Fraction of Dry Matter Content in Waste Incinerated (Wet Weight)	Fraction of Carbon in Dry Matter (Total Carbon Content)	Fraction of Fossil Carbon in the Total Carbon	Oxidation Factor	Conversion Factor	CO ₂ Emissions
	kt	fraction	fraction	fraction	fraction	44/12	Gg
	4.43	0.65	0.6	0.4	1	3.67	2.53

	А	В	С	D	E
			C=AxBx10-6		E=CxD
CH₄	Total Amount of Clinical Waste Incinerated (Wet Weight)	CH₄ Emission Factor	CH₄ Emissions	Global Warming Potential of CH₄	Emissions in CO₂eq
	kt	kg CH ₄ /kt waste	Gg		Gg
	4.43	0.2	0.00000	28	0.00002

	А	В	С	D	Е
			C=AxBx10 ⁻⁶		E=CxD
N ₂ 0	Total Amount of Clinical Waste Incinerated (Wet Weight)	N₂O Emission Factor	N ₂ O Emissions	Global Warming Potential of N ₂ O	Emissions in CO₂eq
	kt	kg N ₂ O/kt waste	Gg		Gg
-	4.43	50	0.00022	265	0.059

1. CH₄ emissions from solid waste disposal are computed based on CDM methodologies.

Waste

Clinical Waste Incineration

SECTOR	Waste
CATEGORY	Incineration and Open Burning of Waste
CATEGORY CODE	4C1 – Hazardous Waste Incineration
SHEET	CO_2 , CH_4 and N_2O emissions from Hazardous Waste Incineration

	А	В	С	D	E	F
						F=AxBxCxDxE
CO ₂	Total Amount of Hazardous Waste Incinerated (Wet Weight)	Fraction of Carbon in Dry Matter (Total Carbon Content)	Fraction of Fossil Carbon in the Total Carbon	Oxidation Factor	Conversion Factor	CO ₂ Emissions
	kt	fraction	fraction	fraction	44/12	Gg
	152.98	0.5	0.9	1	3.67	252.417

	А	В	С	D	Е	
			C=AxBx10 ⁻⁶		E=CxD	
CH₄	Total Amount of Hazardous Waste Incinerated (Wet Weight)	CH₄ Emission Factor	CH₄ Emissions	Global Warming Potential of CH₄	Emissions in CO ₂ eq	
	kt	kg CH ₄ /kt waste	Gg		Gg	
	152.98	0.2	0.00003	28	0.00086	

	А	В	С	D	E
N ₂ 0			C=AxBx10 ⁻⁶		E=CxD
	Total Amount of Hazardous Waste Incinerated (Wet Weight)	N ₂ O Emission Factor	N ₂ O Emissions	Global Warming Potential of N ₂ O	Emissions in CO₂eq
	kt	kg N ₂ O/kt waste	Gg		Gg
	152.98	50	0.00765	265	2.027

SECTOR	Waste
CATEGORY	Wastewater Treatment and Disch
CATEGORY CODE	4D
SHEET	N ₂ O emissions from Wastewater

		А	В	С	D	E
N ₂ 0	Annual per capita protein intake, <i>Protein</i>	Annual per capita protein intake, <i>Protein</i>	Total Population in Singapore	Fraction of Nitrogen in Protein	Factor for non-consumed protein added to the wastewater	Factor for industrial and commercial co-discharged protein into the sewer system
	gram/person/day	kg/person/year		kg N/kg protein	fraction	fraction
	71.41	26.065	5,607,283	0.16	1.1	1.25

The annual per capita protein intake is estimated from Southeast Asia's average per capita protein intake (Source: UN Food and Agriculture Organisation (FAO)) as Singapore-specific figures are not available.
 The total population in Singapore is based on the latest data available from the Department of Statistics (DOS).

harge

Treatment and Discharge

Н	I	J		
xBxCxDxE)-F]xGx (44/28)x10 ⁻⁶		J=HxI		
N ₂ O Emissions	Global Warming Potential of N ₂ O	Emissions in CO ₂ eq		
Gg		Gg		
0.253	265	66.949		

As reported in Singapore's Fourth National Communication and Third Biennial Update Report

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH_4	N ₂ O	HFCs		
-	CO ₂ equivalents (Gg)					
Total (Net) National Emissions	47,549.73	105.79	318.77	364.65		
1 — ENERGY	47,002.87	68.60	208.61			
1A — Fuel Combustion Activities	46,051.38	53.82	207.33			
1A1 Energy Industries	19,601.93	8.97	61.68			
1A2 Manufacturing Industries and Construction	19,136.08	12.08	16.13			
1A3 Transport	6,675.08	31.26	129.24			
1A4a Commercial / Institutional	429.78	1.02	0.19			
1A4b Residential	208.50	0.50	0.10			
1B — Fugitive Emissions from Fuels	951.49	14.78	1.28			
1B2 Oil and Natural Gas	951.49	14.78	1.28			
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	290.85	0.01	38.42	364.65		
3 — AGRICULTURE	NE	NE	NE			
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	59.49	NO	4.83			
4 — WASTE	196.53	37.18	66.91			
4A — Solid Waste Disposal		37.18				
4C — Incineration and Open Burning of Waste	196.53	0.00	1.61			
Clinical Waste Incineration	1.91	0.00	0.04			
Hazardous Waste Incineration	194.62	0.00	1.56			
4D — Wastewater Treatment and Discharge		NE	65.31			
INFORMATION ITEMS						
CO ₂ from Biomass Combustion for Energy Production	1,669.35					

- 1. According to the 2006 IPCC Guidelines, information items are not included in the national total emissions. 2. In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated
- As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

Greenhouse Gas Source and Sink Categories	PFCs	SF_6	NF ₃	Total (Net) National Emissions
		CO ₂	equivalents (Gg)	
Total (Net) National Emissions	1,260.91	178.91	164.58	49,943.35
1 — ENERGY				47,280.08
1A — Fuel Combustion Activities				46,312.54
1A1 Energy Industries				19,672.59
1A2 Manufacturing Industries and Construction				19,164.28
1A3 Transport				6,835.58
1A4a Commercial / Institutional				430.99
1A4b Residential				209.10
1B — Fugitive Emissions from Fuels				967.54
1B2 Oil and Natural Gas				967.54
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	1,260.91	178.91	164.58	2,298.34
3 — AGRICULTURE				NE
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				64.32
4 — WASTE				300.62
4A — Solid Waste Disposal				37.18
4C — Incineration and Open Burning of Waste				198.13
Clinical Waste Incineration				1.95
Hazardous Waste Incineration				196.18
4D — Wastewater Treatment and Discharge				65.31
INFORMATION ITEMS				
CO ₂ from Biomass Combustion for Energy Production				1,669.35

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated where necessary.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

As reported in Singapore's Second Biennial Update Report

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH_4	N ₂ 0	HFCs	
-	CO ₂ equivalents (Gg)				
Total (Net) National Emissions	46,056.49	126.39	303.59	45.85	
1 — ENERGY	45,812.71	65.67	210.26		
1A — Fuel Combustion Activities	45,587.19	57.31	209.40		
1A1 Energy Industries	20,585.83	12.05	62.45		
1A2 Manufacturing Industries and Construction	17,672.64	11.80	16.65		
1A3 Transport	6,684.15	31.93	130.01		
1A4a Commercial / Institutional	434.54	1.02	0.19		
1A4b Residential	210.03	0.51	0.10		
1B — Fugitive Emissions from Fuels	225.52	8.36	0.87		
1B2 Oil and Natural Gas	225.52	8.36	0.87		
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	75.62	0.01	23.54	45.85	
3 — AGRICULTURE	NE	NE	NE		
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	-16.59	NO	4.85		
4 — WASTE	184.75	60.71	64.93		
4A — Solid Waste Disposal		60.71			
4C — Incineration and Open Burning of Waste	184.75	0.00	1.51		
Clinical Waste Incineration	1.49	0.00	0.03		
Hazardous Waste Incineration	183.27	0.00	1.47		
4D — Wastewater Treatment and Discharge		NE	63.43		
INFORMATION ITEMS					
CO ₂ from Biomass Combustion for Energy Production	1,645.87				

- 1. According to the 2006 IPCC Guidelines, information items are not included in the national total emissions. 2. In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated
- As some figures are considerably small, they may be presented as "0.00" due to rounding
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

Greenhouse Gas Source and Sink Categories	PFCs	SF_6	NF ₃	Total (Net) National Emissions
		CO2	equivalents (Gg)	
Total (Net) National Emissions	1,188.01	92.54	96.97	47,909.83
1 — ENERGY				46,088.64
1A — Fuel Combustion Activities				45,853.90
1A1 Energy Industries				20,660.33
1A2 Manufacturing Industries and Construction				17,701.08
1A3 Transport				6,846.10
1A4a Commercial / Institutional				435.75
1A4b Residential				210.63
1B — Fugitive Emissions from Fuels				234.74
1B2 Oil and Natural Gas				234.74
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	1,188.01	92.54	96.97	1,522.54
3 — AGRICULTURE				NE
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				-11.74
4 — WASTE				310.40
4A — Solid Waste Disposal				60.71
4C — Incineration and Open Burning of Waste				186.26
Clinical Waste Incineration				1.52
Hazardous Waste Incineration				184.74
4D — Wastewater Treatment and Discharge				63.43
INFORMATION ITEMS				
CO ₂ from Biomass Combustion for Energy Production				1,645.87

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated where necessary.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

As reported in Singapore's Third National Communication and First Biennial Update Report

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH₄	N ₂ O	HFCs	
	CO ₂ equivalents (Gg)				
Total (Net) National Emissions	44,387.75	158.60	291.37	42.32	
1 — ENERGY	44,153.19	63.65	208.07		
1A — Fuel Combustion Activities	43,997.34	57.88	207.21		
1A1 Energy Industries	20,899.50	13.50	66.02		
1A2 Manufacturing Industries and Construction	16,159.14	11.04	15.84		
1A3 Transport	6,279.47	31.78	125.05		
1A4a Commercial / Institutional	448.67	1.05	0.20		
1A4b Residential	210.56	0.50	0.10		
1B — Fugitive Emissions from Fuels	155.84	5.77	0.87		
1B2 Oil and Natural Gas	155.84	5.77	0.87		
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	52.26	0.01	17.96	42.32	
3 — AGRICULTURE	NE	NE	NE		
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	-24.52	NO	4.89		
4 — WASTE	206.82	94.94	60.45		
4A — Solid Waste Disposal		94.94			
4C — Incineration and Open Burning of Waste	206.82	0.00	1.68		
Clinical Waste Incineration	1.36	0.00	0.03		
Hazardous Waste Incineration	205.46	0.00	1.65		
4D — Wastewater Treatment and Discharge		NE	58.77		
INFORMATION ITEMS					
CO ₂ from Biomass Combustion for Energy Production	1,653.47				

- 1. According to the 2006 IPCC Guidelines, information items are not included in the national total emissions. 2. In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated
- As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

Greenhouse Gas Source and Sink Categories	PFCs	SF ₆	NF ₃	Total (Net) National Emissions
Total (Net) National Emissions	1,103.99	84.81	73.99	46,142.83
1 — ENERGY				44,424.91
1A — Fuel Combustion Activities				44,262.43
1A1 Energy Industries				20,979.02
1A2 Manufacturing Industries and Construction				16,186.02
1A3 Transport				6,436.31
1A4a Commercial / Institutional				449.92
1A4b Residential				211.16
1B — Fugitive Emissions from Fuels				162.48
1B2 Oil and Natural Gas				162.48
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	1,103.99	84.81	73.99	1,375.34
3 — AGRICULTURE				NE
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				-19.63
4 — WASTE				362.21
4A — Solid Waste Disposal				94.94
4C — Incineration and Open Burning of Waste				208.50
Clinical Waste Incineration				1.39
Hazardous Waste Incineration				207.11
4D — Wastewater Treatment and Discharge				58.77
INFORMATION ITEMS				
CO ₂ from Biomass Combustion for Energy Production				1,653.47

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated where necessary.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

≥ NNEX

As reported in Singapore's Second National Communication

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH_4	N ₂ O	HFCs	
-	CO ₂ equivalents (Gg)				
Total (Net) National Emissions	37,840.74	223.28	262.27	9.50	
1 — ENERGY	37,676.06	61.53	196.21		
1A — Fuel Combustion Activities	37,543.15	56.61	195.34		
1A1 Energy Industries	20,793.35	20.06	67.02		
1A2 Manufacturing Industries and Construction	10,268.95	8.24	13.36		
1A3 Transport	5,840.44	26.81	114.68		
1A4a Commercial / Institutional	294.54	0.70	0.13		
1A4b Residential	345.86	0.80	0.15		
1B — Fugitive Emissions from Fuels	132.91	4.92	0.87		
1B2 Oil and Natural Gas	132.91	4.92	0.87		
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	44.57	0.01	16.40	9.50	
3 — AGRICULTURE	NE	NE	NE		
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	16.28	NO	8.87		
4 — WASTE	103.85	161.74	40.80		
4A — Solid Waste Disposal		161.74			
4C — Incineration and Open Burning of Waste	103.85	0.00	0.84		
Clinical Waste Incineration	0.49	0.00	0.01		
Hazardous Waste Incineration	103.36	0.00	0.83		
4D — Wastewater Treatment and Discharge		NE	39.96		
INFORMATION ITEMS					
CO ₂ from Biomass Combustion for Energy Production	1,999.40				

- 1. According to the 2006 IPCC Guidelines, information items are not included in the national total emissions. 2. In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated
- As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

Greenhouse Gas Source and Sink Categories	PFCs	SF_6	NF ₃	Total (Net) National Emissions
Total (Net) National Emissions	519.23	29.75	67.57	38,952.34
1 — ENERGY				37,933.79
1A — Fuel Combustion Activities				37,795.09
1A1 Energy Industries				20,880.42
1A2 Manufacturing Industries and Construction				10,290.55
1A3 Transport				5,981.93
1A4a Commercial / Institutional				295.38
1A4b Residential				346.81
1B — Fugitive Emissions from Fuels				138.70
1B2 Oil and Natural Gas				138.70
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	519.23	29.75	67.57	687.02
3 — AGRICULTURE				NE
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				25.14
4 — WASTE				306.38
4A — Solid Waste Disposal				161.74
4C — Incineration and Open Burning of Waste				104.69
Clinical Waste Incineration				0.50
Hazardous Waste Incineration				104.19
4D — Wastewater Treatment and Discharge				39.96
INFORMATION ITEMS				
CO ₂ from Biomass Combustion for Energy Production				1,999.40

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated where necessary.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

As reported in Singapore's Initial National Communication

Greenhouse Gas Source and Sink Categories	Net CO ₂	CH_4	N ₂ O	HFCs		
	CO2 equivalents (Gg)					
Total (Net) National Emissions	27,656.40	128.97	196.17	5.45		
1 — ENERGY	27,500.56	46.79	148.75			
1A — Fuel Combustion Activities	27,445.62	44.76	147.89			
1A1 Energy Industries	13,721.77	12.31	43.57			
1A2 Manufacturing Industries and Construction	8,765.47	7.69	13.14			
1A3 Transport	4,316.09	23.27	90.90			
1A4a Commercial / Institutional	331.06	0.77	0.15			
1A4b Residential	311.23	0.71	0.14			
1B — Fugitive Emissions from Fuels	54.94	2.04	0.87			
1B2 Oil and Natural Gas	54.94	2.04	0.87			
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	18.42	0.01	0.13	5.45		
3 — AGRICULTURE	NE	NE	NE			
3 — LAND USE, LAND-USE CHANGE AND FORESTRY	60.74	NO	10.92			
4 — WASTE	76.68	82.17	36.37			
4A — Solid Waste Disposal		82.17				
4C — Incineration and Open Burning of Waste	76.68	0.00	0.62			
Clinical Waste Incineration	0.27	0.00	0.01			
Hazardous Waste Incineration	76.41	0.00	0.61			
4D — Wastewater Treatment and Discharge		NE	35.75			
INFORMATION ITEMS						
CO ₂ from Biomass Combustion for Energy Production	1,587.40					

	A 12 A AL	0000100	0 0 1 1 1	· c	·				
	According to the	1 2006 IDC	() (Ludolinoe	information	itome are not	included i	n the national	total	omiccione
ι.	ACCOLUITU LO LITE	2000 160	o Guiuennes.		ILEINS ALE NUL	IIICIUUEU I	וו נווכ וומנוטוומו	lulai	CIIIISSIUIIS.

- 2. In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated
- a. As some figures are considerably small, they may be presented as "0.00" due to rounding.
 b. The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

Greenhouse Gas Source and Sink Categories	PFCs	SF_6	NF ₃	Total (Net) National Emissions
Total (Net) National Emissions	119.13	8.87	0.54	28,115.53
1 — ENERGY				27,696.10
1A — Fuel Combustion Activities				27,638.26
1A1 Energy Industries				13,777.64
1A2 Manufacturing Industries and Construction				8,786.30
1A3 Transport				4,430.26
1A4a Commercial / Institutional				331.98
1A4b Residential				312.08
1B — Fugitive Emissions from Fuels				57.84
1B2 Oil and Natural Gas				57.84
2 — INDUSTRIAL PROCESSES AND PRODUCT USE	119.13	8.87	0.54	152.54
3 — AGRICULTURE				NE
3 — LAND USE, LAND-USE CHANGE AND FORESTRY				71.67
4 — WASTE				195.22
4A — Solid Waste Disposal				82.17
4C — Incineration and Open Burning of Waste				77.30
Clinical Waste Incineration				0.27
Hazardous Waste Incineration				77.03
4D — Wastewater Treatment and Discharge				35.75
INFORMATION ITEMS				
CO ₂ from Biomass Combustion for Energy Production				1,587.40

According to the 2006 IPCC Guidelines, information items are not included in the national total emissions.
 In line with IPCC Good Practice Guidance to continually review the GHG inventory, the figures have been updated where necessary.
 As some figures are considerably small, they may be presented as "0.00" due to rounding.
 The GHG emissions from the Agriculture, Forestry and Other Land Use sector are negligible in comparison with the size of carbon stocks and in comparison with other economic sectors.

AFOLU	Agriculture, Forestry and Other Land Use
AR5	Fifth Assessment Report
BAU	Business-As-Usual
BCA	Building and Construction Authority
BESS	Building Energy Submission System
BREEF	Building Retrofit Energy Efficiency Financing
BUR	Biennial Update Report
CAGR	Compounded Annual Growth Rate
CAP	Climate Action Package
CCGT	Combined Cycle Gas Turbine
CCUS	Carbon Capture, Utilisation and Storage
CDM	Clean Development Mechanism
CER	Certified Emission Reduction
CERT	Clean Energy Research & Testbedding Programme
CEVS	Carbon Emissions-Based Vehicle Scheme
CFLni	Compact Fluorescent Lamps with Non-Integrated Ballasts
CH4	Methane
CNG	Compressed Natural Gas
CO ₂	Carbon Dioxide
CO ₂ eq	Carbon Dioxide Equivalent
CO	Carbon Monoxide
DC	Data Centre
dMRV	Domestic Measurement, Reporting and Verification
DOC	Degradable Organic Carbon
DOS	Department of Statistics
DTSS	Deep Tunnel Sewerage System
E2F	Energy Efficiency Fund
EASe	Energy Efficiency Improvement Assistance Scheme
ECA	Energy Conservation Act
EDB	Economic Development Board
EDMA	Emissions Data Monitoring and Analysis
EEAI	Electric Vehicle Early Adoption Incentive
EEO	Energy Efficiency Opportunities
EETC	Energy Efficiency Technology Centre
EMA	Energy Market Authority
EMIS	Energy Management Information Systems
EPHA	Environmental Public Health Act
EPMA	Environmental Protection and Management Act
Exco	Executive Committee
FAO	Food and Agriculture Organisation

GBMP	Green Building Masterplan
Gg	Gigagram
GHG	Greenhouse Gas
GREET	Grant for Energy Efficient Technologies
GWh	Gigawatt-Hour
GWp	Gigawatt-Peak
GWPs	Global Warming Potentials
HDB	Housing & Development Board
HFCs	Hydrofluorocarbons
ICA	International Consultations and Analysis
ICE	Internal Combustion Engine
ICT	Information and Communications Technology
IEA	International Energy Agency
IES	Institution of Engineers, Singapore
IMCCC	Inter-Ministerial Committee on Climate Chang
INWG	International Negotiations Working Group
IPCC	Intergovernmental Panel on Climate Change
IPPU	Industrial Processes and Product Use
IWMF	Integrated Waste Management Facility
КСА	Key Category Analysis
kg	Kilogram
kt	Kilotonne
LDCs	Least Developed Countries
LEDS	Long-Term Low-Emissions Development Strat
LNG	Liquefied Natural Gas
LPG	Liquefied Petroleum Gas
LTA	Land Transport Authority
LULUCF	Land Use, Land-Use Change and Forestry
LWG	Long-Term Emissions and Mitigation Working
MCF	Methane Correction Factor
MELS	Mandatory Energy Labelling Scheme
MEPS	Minimum Energy Performance Standards
MGO/MDO	Marine Gas Oil/Marine Diesel Oil
MRV	Measurement, Reporting and Verification
MSS	Meteorological Service Singapore
Mt	Million Tonnes
$MtCO_2 eq$	Million Tonnes of Carbon Dioxide Equivalent
MWp	Megawatt-Peak
N ₂ 0	Nitrous Oxide
NC	National Communication
NCCS	National Climate Change Secretariat

FELS

Fuel Economy Labelling Scheme

у
·
ge
tegy
1 Group
у біоцр

NDC	Nationally Determined Contribution
NEA	National Environment Agency
NMVOCs	Non-Methane Volatile Organic Compounds
NO _x	Nitrogen Oxides
OPC	Off-Peak Car
PFCs	Perfluorocarbons
Pre-FS	Pre-Feasibility Study
PUB	PUB, Singapore's National Water Agency
PUE	Power Usage Effectiveness
PV	Photovoltaic
QA	Quality Assurance
QC	Quality Control
R&D	Research and Development
RAC	Refrigeration and Air Conditioning
REG(E)	Resource Efficiency Grant for Energy
RWG	Resilience Working Group
SAR	Second Assessment Report
SCP	Singapore Cooperation Programme
SCS	Solar Capability Scheme
SDCC	Sustainable Development and Climate Change
SDGs	Sustainable Development Goals
SEAS	Sustainable Energy Association of Singapore
SF ₆	Sulphur Hexafluoride
SHD	Singapore Height Datum
SIDS	Small Island Developing States
SIT	Singapore Institute of Technology
SMEs	Small and Medium-sized Enterprises
SO ₂	Sulphur Dioxide
SWDS	Solid Waste Disposal Site
tCO ₂ eq	Tonne of Carbon Dioxide Equivalent
TWRP	Tuas Water Reclamation Plant
UFW	Unaccounted-for-Water
UNFCCC	United Nations Framework Convention on Climate Change
VES	Vehicular Emissions Scheme
WCR	Walk-Cycle-Ride
WEF	World Economic Forum

